Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sultan Qaboos Univ Med J ; 22(3): 314-324, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36072071

ABSTRACT

Female genital tuberculosis (FGTB) is a widespread infectious disease among young women. This meta-analysis aimed to investigate the prevalence of FGTB among infertile women and its contribution to primary and secondary infertility. PubMed, MEDLINE®, WorldCat, The Lens, direct Google search, Google Scholar and ResearchGate were searched from 1971 to July 17, 2021 using the following terms: "prevalence", "epidemiology", "urogenital tuberculosis", "FGTB", "infertile women", "infertility complaints" and "FGTB testing methods". Data were extracted and a meta-analysis was performed. A total of 42 studies were selected with a total of 30,918 infertile women. Of these, the pooled prevalence of FGTB was 20% (95% confidence interval: 15-25%, I2 = 99.94%) and the prevalence of overall infertility, primary infertility and secondary infertility among FGTB population were 88%, 66% and 34%, respectively. The proportion of FGTB is remarkable among infertile women globally. The biggest burden of the disease is present in low-income countries followed by lower-to-middle- and upper-to-middle-income countries.


Subject(s)
Infertility, Female , Tuberculosis, Female Genital , Female , Humans , Infertility, Female/complications , Infertility, Female/etiology , Prevalence , Tuberculosis, Female Genital/complications , Tuberculosis, Female Genital/epidemiology
2.
Clin Transl Oncol ; 21(3): 268-279, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30136132

ABSTRACT

It is estimated that more than half of cancer patients undergo radiotherapy during the course of their treatment. Despite its beneficial therapeutic effects on tumor cells, exposure to high doses of ionizing radiation (IR) is associated with several side effects. Although improvements in radiotherapy techniques and instruments could reduce these side effects, there are still important concerns for cancer patients. For several years, scientists have been trying to modulate tumor and normal tissue responses to IR, leading to an increase in therapeutic ratio. So far, several types of radioprotectors and radiosensitizers have been investigated in experimental studies. However, high toxicity of chemical sensitizers or possible tumor protection by radioprotectors creates a doubt for their clinical applications. On the other hand, the protective effects of these radioprotectors or sensitizer effects of radiosensitizers may limit some type of cancers. Hence, the development of some radioprotectors without any protective effect on tumor cells or low toxic radiosensitizers can help improve therapeutic ratio with less side effects. Melatonin as a natural body hormone is a potent antioxidant and anti-inflammatory agent that shows some anti-cancer properties. It is able to neutralize different types of free radicals produced by IR or pro-oxidant enzymes which are activated following exposure to IR and plays a key role in the protection of normal tissues. In addition, melatonin has shown the ability to inhibit long-term changes in inflammatory responses at different levels, thereby ameliorating late side effects of radiotherapy. Fortunately, in contrast to classic antioxidants, some in vitro studies have revealed that melatonin has a potent anti-tumor activity when used alongside irradiation. However, the mechanisms of its radiosensitive effect remain to be elucidated. Studies suggested that the activation of pro-apoptosis gene, such as p53, changes in the metabolism of tumor cells, suppression of DNA repair responses as well as changes in biosynthesis of estrogen in breast cancer cells are involved in this process. In this review, we describe the molecular mechanisms for radioprotection and radiosensitizer effects of melatonin. Furthermore, some other proposed mechanisms that may be involved are presented.


Subject(s)
Antioxidants/therapeutic use , Melatonin/therapeutic use , Radiation-Protective Agents/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Radiotherapy/methods , Animals , Humans , Neoplasms/drug therapy , Neoplasms/radiotherapy , Radiation Injuries/prevention & control , Radiation Tolerance/drug effects
3.
Clin Transl Oncol ; 20(8): 975-988, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29318449

ABSTRACT

Every year, millions of cancer patients undergo radiation therapy for treating and destroying abnormal cell growths within normal cell environmental conditions. Thus, ionizing radiation can have positive therapeutic effects on cancer cells as well as post-detrimental effects on surrounding normal tissues. Previous studies in the past years have proposed that the reduction and oxidation metabolism in cells changes in response to ionizing radiation and has a key role in radiation toxicity to normal tissue. Free radicals generated from ionizing radiation result in upregulation of cyclooxygenases (COXs), nitric oxide synthase (NOSs), lipoxygenases (LOXs) as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), and their effected changes in mitochondrial functions are markedly noticeable. Each of these enzymes is diversely expressed in multiple cells, tissues and organs in a specific manner. Overproduction of reactive oxygen radicals (ROS), reactive hydroxyl radical (ROH) and reactive nitrogen radicals (RNS) in multiple cellular environments in the affected nucleus, cell membranes, cytosol and mitochondria, and other organelles, can specifically affect the sensitive and modifying enzymes of the redox system and repair proteins that play a pivotal role in both early and late effects of radiation. In recent years, ionizing radiation has been known to affect the redox functions and metabolism of NADPH oxidases (NOXs) as well as having destabilizing and detrimental effects on directly and indirectly affected cells, tissues and organs. More noteworthy, chronic free radical production may continue for years, increasing the risk of carcinogenesis and other oxidative stress-driven degenerative diseases as well as pathologies, in addition to late effect complications of organ fibrosis. Hence, knowledge about the mechanisms of chronic oxidative damage and injury in affected cells, tissues and organs following exposure to ionizing radiation may help in the development of treatment and management strategies of complications associated with radiotherapy (RT) or radiation accident victims. Thus, this medically relevant phenomenon may lead to the discovery of potential antioxidants and inhibitors with promising results in targeting and modulating the ROS/NO-sensitive enzymes in irradiated tissues and organ injury systems.


Subject(s)
Antioxidants/pharmacology , Neoplasms/drug therapy , Oxidative Stress/radiation effects , Radiation, Ionizing , Reactive Oxygen Species/metabolism , Animals , Humans , Oxidation-Reduction , Signal Transduction/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...