Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 19(1): 477, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30541431

ABSTRACT

BACKGROUND: Targeted resequencing has become the most used and cost-effective approach for identifying causative mutations of Mendelian diseases both for diagnostics and research purposes. Due to very rapid technological progress, NGS laboratories are expanding their capabilities to address the increasing number of analyses. Several open source tools are available to build a generic variant calling pipeline, but a tool able to simultaneously execute multiple analyses, organize, and categorize the samples is still missing. RESULTS: Here we describe VarGenius, a Linux based command line software able to execute customizable pipelines for the analysis of multiple targeted resequencing data using parallel computing. VarGenius provides a database to store the output of the analysis (calling quality statistics, variant annotations, internal allelic variant frequencies) and sample information (personal data, genotypes, phenotypes). VarGenius can also perform the "joint analysis" of hundreds of samples with a single command, drastically reducing the time for the configuration and execution of the analysis. VarGenius executes the standard pipeline of the Genome Analysis Tool-Kit (GATK) best practices (GBP) for germinal variant calling, annotates the variants using Annovar, and generates a user-friendly output displaying the results through a web page. VarGenius has been tested on a parallel computing cluster with 52 machines with 120GB of RAM each. Under this configuration, a 50 M whole exome sequencing (WES) analysis for a family was executed in about 7 h (trio or quartet); a joint analysis of 30 WES in about 24 h and the parallel analysis of 34 single samples from a 1 M panel in about 2 h. CONCLUSIONS: We developed VarGenius, a "master" tool that faces the increasing demand of heterogeneous NGS analyses and allows maximum flexibility for downstream analyses. It paves the way to a different kind of analysis, centered on cohorts rather than on singleton. Patient and variant information are stored into the database and any output file can be accessed programmatically. VarGenius can be used for routine analyses by biomedical researchers with basic Linux skills providing additional flexibility for computational biologists to develop their own algorithms for the comparison and analysis of data. The software is freely available at: https://github.com/frankMusacchia/VarGenius.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Databases, Factual , Humans
2.
Clin Genet ; 93(3): 675-681, 2018 03.
Article in English | MEDLINE | ID: mdl-28902392

ABSTRACT

Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Arginine methylation is involved in multiple biological processes, such as signal transduction, mRNA splicing, transcriptional control, DNA repair, and protein translocation. Currently, 7 patients have been described harboring compound heterozygous or homozygous variants in the PRMT7 gene, causing a novel intellectual disability syndrome, known as SBIDDS syndrome (Short Stature, Brachydactyly, Intellectual Developmental Disability, and Seizures). We report on 3 additional patients from 2 consanguineous families with severe/moderate intellectual disability, short stature, brachydactyly and dysmorphisms. Exome sequencing revealed 2 novel homozygous mutations in PRMT7. Our findings expand the clinical and molecular spectrum of homozygous PRMT7 mutations, associated to the SBIDDS syndrome, showing a possible correlation between the type of mutation and the severity of the phenotype.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Phenotype , Protein-Arginine N-Methyltransferases/genetics , Adolescent , Alleles , Comparative Genomic Hybridization , Consanguinity , Female , Genetic Association Studies/methods , Genotype , Humans , Karyotype , Male , Pedigree , Radiography , Young Adult
3.
BMC Genomics ; 16: 847, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26493315

ABSTRACT

BACKGROUND: The phlebotomine sand fly Phlebotomus perniciosus (Diptera: Psychodidae, Phlebotominae) is a major Old World vector of the protozoan Leishmania infantum, the etiological agent of visceral and cutaneous leishmaniases in humans and dogs, a worldwide re-emerging diseases of great public health concern, affecting 101 countries. Despite the growing interest in the study of this sand fly species in the last years, the development of genomic resources has been limited so far. To increase the available sequence data for P. perniciosus and to start studying the molecular basis of the sexual differentiation in sand flies, we performed whole transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females and de novo transcriptome assembly. RESULTS: We assembled 55,393 high quality transcripts, of which 29,292 were unique, starting from adult whole body male and female pools. 11,736 transcripts had at least one functional annotation, including full-length low abundance salivary transcripts, 981 transcripts were classified as putative long non-coding RNAs and 244 transcripts encoded for putative novel proteins specific of the Phlebotominae sub-family. Differential expression analysis identified 8590 transcripts significantly biased between sexes. Among them, some show relaxation of selective constraints when compared to their orthologs of the New World sand fly species Lutzomyia longipalpis. CONCLUSIONS: In this paper, we present a comprehensive transcriptome resource for the sand fly species P. perniciosus built from short-read RNA-seq and we provide insights into sex-specific gene expression at adult stage. Our analysis represents a first step towards the identification of sex-specific genes and pathways and a foundation for forthcoming investigations into this important vector species, including the study of the evolution of sex-biased genes and of the sexual differentiation in phlebotomine sand flies.


Subject(s)
Leishmaniasis, Visceral/genetics , Phlebotomus/genetics , Transcriptome/genetics , Amino Acid Sequence , Animals , Dogs , Female , High-Throughput Nucleotide Sequencing , Humans , Insect Vectors/genetics , Leishmania infantum/genetics , Leishmania infantum/pathogenicity , Leishmaniasis, Visceral/parasitology , Male , Phlebotomus/parasitology , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...