Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963344

ABSTRACT

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Subject(s)
Cell Differentiation , Endoplasmic Reticulum Chaperone BiP , Muscle, Skeletal , Myoblasts , Receptor, IGF Type 1 , Signal Transduction , Tunicamycin , Animals , Mice , Glycosylation , Myoblasts/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Tunicamycin/pharmacology , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Muscle, Skeletal/metabolism , Muscle Development/physiology , Cell Line , Mice, Transgenic , Endoplasmic Reticulum Stress , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics
2.
Neuromolecular Med ; 26(1): 5, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491246

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular disease with a wide disease progression. Despite several efforts to develop efficient biomarkers, many concerns about the available ones still need to be addressed. MicroRNA (miR) are non-coding RNAs that can modulate molecular circuits and are involved in ALS pathogenic mechanisms. 22 fast and 23 slow-progressing-defined ALS patients were recruited. ALSFRS-R, strength, respiratory function, nerve conduction studies, and creatine kinase were evaluated at the baseline and after 6 months of follow-up. The mean monthly reduction of the previous variables (progression index - PI) was calculated. MiR206, 133a-3p, 151a-5p, 199a-5p, and 423-3p were dosed. The univariate analysis showed an independent reduction of miR206 and an increase of miR423-3p in patients with a slow slope of ALSFRS-R and weakness, respectively. MiR206 and 423-3p are differently modulated in fast and slow-progressing ALS patients, suggesting a role for microRNAs in prognosis and therapeutic target.


Subject(s)
Amyotrophic Lateral Sclerosis , MicroRNAs , Humans , Amyotrophic Lateral Sclerosis/genetics , Disease Progression , MicroRNAs/genetics , Research Design , Biomarkers
3.
Eur J Transl Myol ; 33(4)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38058287

ABSTRACT

A well-synchronized circadian system is a manifestation of an individual's health. A gradual weakening of the circadian timing function characterizes aging. Regular exercise has been suggested as a modality to improve many detrimental changes associated with aging. Therefore, we aim to examine the benefits and risks of lifelong endurance exercise on age-dependent changes in the circadian time-keeping function, the performance of the muscular system and health status. The study protocol has a comparative cross-sectional design, including groups of senior (65 to 75 years old, n=16) and young (20-30 years old, n=16) endurance runners and triathletes. Age-matched groups of young and elderly sedentary men are included as controls. The circadian function is evaluated mainly by measurement of urinary 6-sulphatoxymelatonin, a metabolite of the hormone melatonin shown to participate in the modulation of sleep cycles. The 6-sulphatoxymelatonin will be assessed in urine samples collected upon awakening in the morning and in the late evening, as a marker of melatonin production. In addition, sleep/activity rhythms and sleep quality will be measured by wrist actigraphy. Performance of the muscular system will be assessed by examination of muscular strength and quantifying of gene expression in the skeletal muscle tissue samples. Health status and age-induced reduction in immune function are to be analysed via the balance of pro- and anti-inflammatory immune markers in the plasma and skeletal muscle, body composition, bone density and physical fitness.

4.
Aging Cell ; 22(12): e14022, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37960940

ABSTRACT

DNA damage is emerging as a driver of heart disease, although the cascade of events, its timing, and the cell types involved are yet to be fully clarified. In this context, the implication of cardiomyocytes has been highlighted, while that of vasculature smooth muscle cells has been implicated but not explored exhaustively. In our previous work we characterized a factor called Ft1 in mice and AKTIP in humans whose depletion generates telomere instability and DNA damage. Herein, we explored the effect of the reduction of Ft1 on the heart with the goal of comparatively defining the impact of DNA damage targeted to vasculature smooth muscle cells to that of diffuse damage. Using two newly generated mouse models, Ft1 constitutively knocked out (Ft1ko) mice, and mice in which we targeted the Ft1 depletion to the smooth muscle cells (Ft1sm22ko), it is shown that both genetic models display cardiac defects but with differences. Both Ft1ko and Ft1sm22ko mice display hypertrophy, fibrosis, and functional heart defects. Interestingly, Ft1sm22ko mice have early milder pathological traits that become manifest with age. Significantly, the defects of Ft1ko mice, including the alteration of the left ventricle and functional heart defects, are rescued by depletion of the DNA damage sensor p53. These results point to Ft1 deficiency as a driver of cardiac disease and show that Ft1 deficiency targeted to vasculature smooth muscle cells generates a pre-pathological profile exacerbated by age.


Subject(s)
DNA Damage , Telomere , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , DNA Damage/genetics , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Telomere/genetics , Telomere/metabolism
5.
J Cachexia Sarcopenia Muscle ; 14(6): 2550-2568, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37727078

ABSTRACT

BACKGROUND: Causes and mechanisms underlying cancer cachexia are not fully understood, and currently, no therapeutic approaches are available to completely reverse the cachectic phenotype. Interleukin-6 (IL-6) has been extensively described as a key factor in skeletal muscle physiopathology, exerting opposite roles through different signalling pathways. METHODS: We employed a three-dimensional ex vivo muscle engineered tissue (X-MET) to model cancer-associated cachexia and to study the effectiveness of selective inhibition of IL-6 transignalling in counteracting the cachectic phenotype. Conditioned medium (CM) derived from C26 adenocarcinoma cells was used as a source of soluble factors contributing to the establishment of cancer cachexia in the X-MET model. A dose of 1.2 ng/mL of glycoprotein-130 fused chimaera (gp130Fc) was added to cachectic culture medium to neutralize IL-6 transignalling. RESULTS: C26-conditioned medium induced a cachectic-like phenotype in the X-MET, leading to a decline of muscle mass (-60%; P < 0.001), a reduction in myosin expression (-92.4%; P < 0.005) and a reduction of the contraction frequency spectrum (-94%). C26-conditioned medium contains elevated amounts of IL-6 (8.61 ± 4.09 pg/mL) and IL6R (56.85 ± 10.96 pg/mL). These released factors activated the signal transducer and activator of transcription 3 (STAT3) signalling in the C26_CM X-MET system (phosphorylated STAT3/TOTAL +54.6%; P < 0.005), which in turn promote an enhancement of Il-6 (+69.2%; P < 0.05) and Il6r (+43%; P < 0.05) gene expression, suggesting the induction of a feed-forward loop. The selective neutralization of IL-6 transignalling, by gp130Fc, in C26_CM X-MET prevented the hyperactivation of STAT3 (-55.8%; P < 0.005), countered the reduction of cross-sectional area (+28.2%; P < 0.05) and reduced the expression of proteolytic factors including muscle ring finger-1 (-88%; P < 0.005) and ATROGIN1 (-92%; P < 0.05), thus preserving the robustness and increasing the contractile force (+20%) of the three-dimensional muscle system. Interestingly, the selective inhibition of IL-6 transignalling modulated gene regulatory networks involved in myogenesis and apoptosis, normalizing the expression of pro-apoptotic miRNAs, including miR-31 (-53.2%; P < 0.05) and miR-34c (-65%; P < 0.005), and resulting in the reduction of apoptotic pathways highlighted by the sensible reduction of cleaved caspase 3 (-92.5%; P < 0.005) in gp130Fc-treated C26_CM X-MET. CONCLUSIONS: IL-6 transignalling appeared as a promising target to counter cancer cachexia-related alterations. The X-MET model has proven to be a reliable drug-screening tool to identify novel therapeutic approaches and to test them in preclinical studies, significantly reducing the use of animal models.


Subject(s)
MicroRNAs , Neoplasms , Animals , Cachexia/pathology , Interleukin-6 , Culture Media, Conditioned/pharmacology , Neoplasms/complications
6.
Curr Neurovasc Res ; 20(3): 362-376, 2023.
Article in English | MEDLINE | ID: mdl-37614106

ABSTRACT

BACKGROUND: Physical activity in Amyotrophic Lateral Sclerosis (ALS) plays a controversial role. In some epidemiological studies, both recreational or professional sport exercise has been associated to an increased risk for ALS but the mechanisms underlying the effects of exercise have not been fully elucidated in either patients or animal models. METHODS: To better reproduce the influence of this environmental factor in the pathogenesis of ALS, we exposed SOD1G93A low-copy male mice to multiple exercise sessions at asymptomatic and pre-symptomatic disease stages in an automated home-cage running-wheel system for about 3 months. RESULTS: Repeated voluntary running negatively influenced disease progression by anticipating disease onset, impairing neuromuscular transmission, worsening neuromuscular decline, and exacerbating muscle atrophy. Muscle fibers and neuromuscular junctions (NMJ) as well as key molecular players of the nerve-muscle circuit were similarly affected. CONCLUSION: It thus appears that excessive physical activity can be detrimental in predisposed individuals and these findings could model the increased risk of developing ALS in predisposed and specific professional athletes.


Subject(s)
Amyotrophic Lateral Sclerosis , Male , Animals , Mice , Motor Activity , Disease Models, Animal , Disease Progression
7.
Brain ; 146(11): 4425-4436, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37327376

ABSTRACT

Amyotrophic lateral sclerosis (ALS), the major adult-onset motor neuron disease, has been viewed almost exclusively as a disease of upper and lower motor neurons, with muscle changes interpreted as a consequence of the progressive loss of motor neurons and neuromuscular junctions. This has led to the prevailing view that the involvement of muscle in ALS is only secondary to motor neuron loss. Skeletal muscle and motor neurons reciprocally influence their respective development and constitute a single functional unit. In ALS, multiple studies indicate that skeletal muscle dysfunction might contribute to progressive muscle weakness, as well as to the final demise of neuromuscular junctions and motor neurons. Furthermore, skeletal muscle has been shown to participate in disease pathogenesis of several monogenic diseases closely related to ALS. Here, we move the narrative towards a better appreciation of muscle as a contributor of disease in ALS. We review the various potential roles of skeletal muscle cells in ALS, from passive bystanders to active players in ALS pathophysiology. We also compare ALS to other motor neuron diseases and draw perspectives for future research and treatment.


Subject(s)
Amyotrophic Lateral Sclerosis , Adult , Humans , Amyotrophic Lateral Sclerosis/pathology , Motor Neurons/pathology , Muscle, Skeletal/pathology , Neuromuscular Junction/pathology , Muscle Weakness
8.
Sci Rep ; 13(1): 10370, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365262

ABSTRACT

The adult heart displays poor reparative capacities after injury. Cell transplantation and tissue engineering approaches have emerged as possible therapeutic options. Several stem cell populations have been largely used to treat the infarcted myocardium. Nevertheless, transplanted cells displayed limited ability to establish functional connections with the host cardiomyocytes. In this study, we provide a new experimental tool, named 3D eX vivo muscle engineered tissue (X-MET), to define the contribution of mechanical stimuli in triggering functional remodeling and to rescue cardiac ischemia. We revealed that mechanical stimuli trigger a functional remodeling of the 3D skeletal muscle system toward a cardiac muscle-like structure. This was supported by molecular and functional analyses, demonstrating that remodeled X-MET expresses relevant markers of functional cardiomyocytes, compared to unstimulated and to 2D- skeletal muscle culture system. Interestingly, transplanted remodeled X-MET preserved heart function in a murine model of chronic myocardial ischemia and increased survival of transplanted injured mice. X-MET implantation resulted in repression of pro-inflammatory cytokines, induction of anti-inflammatory cytokines, and reduction in collagen deposition. Altogether, our findings indicate that biomechanical stimulation induced a cardiac functional remodeling of X-MET, which showed promising seminal results as a therapeutic product for the development of novel strategies for regenerative medicine.


Subject(s)
Myocardial Ischemia , Mice , Animals , Myocardial Ischemia/therapy , Myocardium , Myocytes, Cardiac , Tissue Engineering/methods , Cardiovascular Physiological Phenomena
9.
Front Physiol ; 14: 1165811, 2023.
Article in English | MEDLINE | ID: mdl-37250128

ABSTRACT

Rationale: The anatomical substrate of skeletal muscle autonomic innervation has remained underappreciated since it was described many decades ago. As such, the structural and functional features of muscle sympathetic innervation are largely undetermined in both physiology and pathology, mainly due to methodological limitations in the histopathological analysis of small neuronal fibers in tissue samples. Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease which mainly targets motor neurons, and despite autonomic symptoms occurring in a significant fraction of patients, peripheral sympathetic neurons (SNs) are generally considered unaffected and, as such, poorly studied. Purpose: In this research, we compared sympathetic innervation of normal and ALS muscles, through structural analysis of the sympathetic network in human and murine tissue samples. Methods and Results: We first refined tissue processing to circumvent methodological limitations interfering with the detection of muscle sympathetic innervation. The optimized "Neuro Detection Protocol" (NDP) was validated in human muscle biopsies, demonstrating that SNs innervate, at high density, both blood vessels and skeletal myofibers, independent of the fiber metabolic type. Subsequently, NDP was exploited to analyze sympathetic innervation in muscles of SOD1G93A mice, a preclinical ALS model. Our data show that ALS murine muscles display SN denervation, which has already initiated at the early disease stage and worsened during aging. SN degeneration was also observed in muscles of MLC/SOD1G93A mice, with muscle specific expression of the SOD1G93A mutant gene. Notably, similar alterations in SNs were observed in muscle biopsies from an ALS patient, carrying the SOD1G93A mutation. Conclusion: We set up a protocol for the analysis of murine and, more importantly, human muscle sympathetic innervation. Our results indicate that SNs are additional cell types compromised in ALS and suggest that dysfunctional SOD1G93A muscles affect their sympathetic innervation.

10.
Elife ; 122023 03 06.
Article in English | MEDLINE | ID: mdl-36877136

ABSTRACT

Long noncoding RNAs (lncRNAs) are emerging as critical regulators of heart physiology and disease, although the studies unveiling their modes of action are still limited to few examples. We recently identified pCharme, a chromatin-associated lncRNA whose functional knockout in mice results in defective myogenesis and morphological remodeling of the cardiac muscle. Here, we combined Cap-Analysis of Gene Expression (CAGE), single-cell (sc)RNA sequencing, and whole-mount in situ hybridization analyses to study pCharme cardiac expression. Since the early steps of cardiomyogenesis, we found the lncRNA being specifically restricted to cardiomyocytes, where it assists the formation of specific nuclear condensates containing MATR3, as well as important RNAs for cardiac development. In line with the functional significance of these activities, pCharme ablation in mice results in a delayed maturation of cardiomyocytes, which ultimately leads to morphological alterations of the ventricular myocardium. Since congenital anomalies in myocardium are clinically relevant in humans and predispose patients to major complications, the identification of novel genes controlling cardiac morphology becomes crucial. Our study offers unique insights into a novel lncRNA-mediated regulatory mechanism promoting cardiomyocyte maturation and bears relevance to Charme locus for future theranostic applications.


Subject(s)
Myocytes, Cardiac , RNA, Long Noncoding , Animals , Humans , Mice , Cell Differentiation/genetics , Heart Ventricles/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Nuclear Matrix-Associated Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism
11.
Cell Metab ; 35(3): 379-381, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36889277

ABSTRACT

Aging results from the combination of complex processes still largely undefined. In this issue, Benjamin et al. use multiomic analysis to reveal a causative role of altered glutathione (GSH) synthesis and metabolism in age-dependent muscle stem cell (MuSC) dysfunction, casting light on novel mechanisms regulating stem cell function and on therapeutic approaches to improve defective regeneration in the aged muscle.


Subject(s)
Muscle, Skeletal , Stem Cells , Muscle, Skeletal/metabolism , Stem Cells/metabolism , Glutathione/metabolism
12.
Sensors (Basel) ; 22(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36146227

ABSTRACT

Tissue engineering is a multidisciplinary approach focused on the development of innovative bioartificial substitutes for damaged organs and tissues. For skeletal muscle, the measurement of contractile capability represents a crucial aspect for tissue replacement, drug screening and personalized medicine. To date, the measurement of engineered muscle tissues is rather invasive and not continuous. In this context, we proposed an innovative sensor for the continuous monitoring of engineered-muscle-tissue contractility through an embedded technique. The sensor is based on the calibrated deflection of one of the engineered tissue's supporting pins, whose movements are measured using a noninvasive optical method. The sensor was calibrated to return force values through the use of a step linear motor and a micro-force transducer. Experimental results showed that the embedded sensor did not alter the correct maturation of the engineered muscle tissue. Finally, as proof of concept, we demonstrated the ability of the sensor to capture alterations in the force contractility of the engineered muscle tissues subjected to serum deprivation.


Subject(s)
Muscle Contraction , Tissue Engineering , Muscle, Skeletal/physiology
13.
Ageing Res Rev ; 80: 101697, 2022 09.
Article in English | MEDLINE | ID: mdl-35850167

ABSTRACT

Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.


Subject(s)
Aging , Inflammation/metabolism , Interleukin-6 , Aging/physiology , Dose-Response Relationship, Immunologic , Gene Expression Regulation , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Oxidative Stress , Signal Transduction
14.
Cell Mol Bioeng ; 15(3): 255-265, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35611165

ABSTRACT

Introduction: The neuromuscular junction (NMJ) is a chemical synapse responsible for converting electrical pulses generated by the motor neuron into electrical activity in muscle fibers, and is severely impaired in various diseases, such as Amyotrophic Lateral Sclerosis (ALS). Here, we proposed a novel technique to measure, for the first time, NMJ functionality in isotonic conditions, which better reflect muscle physiological activity. Methods: We employed the in-situ testing technique, studied a proper placing of two pairs of wire electrodes for nerve and muscle stimulation, developed an extensive testing protocol, and proposed a novel parameter, the Isotonic Neurotransmission Failure (INF), to properly capture the impairments in neurotransmission during isotonic fatigue. We employed wild-type mice to assess the feasibility of the proposed technique, and the ALS model SOD1G93A mice to demonstrate the validity of the INF. Results: Results confirmed the measurement accuracy in term of average value and coefficient of variation of the parameters measured through nerve stimulation in comparison with the corresponding values obtained for membrane stimulation. The INF values computed for the SOD1G93A tibialis anterior muscles pointed out an impairment of ALS mice during the isotonic fatigue test, whereas, as expected, their resistance to fatigue was higher. Conclusions: In this work we devised a novel technique and a new parameter for a deep assessment of NMJ functionality in isotonic conditions, including fatigue, which is the most crucial condition for the neuronal signal transmission. This technique may be applied to other animal models, to unravel the mechanisms behind muscle-nerve impairments in other neurodegenerative pathologies.

15.
Br J Pharmacol ; 179(8): 1732-1752, 2022 04.
Article in English | MEDLINE | ID: mdl-34783031

ABSTRACT

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles and is currently incurable. Although considered to be a pure motor neuron disease, increasing evidence indicates that the sole protection of motor neurons by a single targeted drug is not sufficient to improve the pathological phenotype. We therefore evaluated the therapeutic potential of the multi-target drug used to treatment of coronary artery disease, trimetazidine, in SOD1G93A mice. EXPERIMENTAL APPROACH: As a metabolic modulator, trimetazidine improves glucose metabolism. Furthermore, trimetazidine enhances mitochondrial metabolism and promotes nerve regeneration, exerting an anti-inflammatory and antioxidant effect. We orally treated SOD1G93A mice with trimetazidine, solubilized in drinking water at a dose of 20 mg kg-1 , from disease onset. We assessed the impact of trimetazidine on disease progression by studying metabolic parameters, grip strength and histological alterations in skeletal muscle, peripheral nerves and the spinal cord. KEY RESULTS: Trimetazidine administration delays motor function decline, improves muscle performance and metabolism, and significantly extends overall survival of SOD1G93A mice (increased median survival of 16 days and 12.5 days for male and female respectively). Moreover, trimetazidine prevents the degeneration of neuromuscular junctions, attenuates motor neuron loss and reduces neuroinflammation in the spinal cord and in peripheral nerves. CONCLUSION AND IMPLICATIONS: In SOD1G93A mice, therapeutic effect of trimetazidine is underpinned by its action on mitochondrial function in skeletal muscle and spinal cord.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Trimetazidine , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Drug Repositioning , Female , Male , Mice , Mice, Transgenic , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Trimetazidine/pharmacology , Trimetazidine/therapeutic use
16.
Pharmaceutics ; 13(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34834195

ABSTRACT

The anatomy and physiology of the eye strongly limit the bioavailability of locally administered drugs. The entrapment of therapeutics into nanocarriers represents an effective strategy for the topical treatment of several ocular disorders, as they may protect the embedded molecules, enabling drug residence on the ocular surface and/or its penetration into different ocular compartments. The present work shows the activity of hyaluronan-cholesterol nanogels (NHs) as ocular permeation enhancers. Thanks to their bioadhesive properties, NHs firmly interact with the superficial corneal epithelium, without penetrating the stroma, thus modifying the transcorneal penetration of loaded therapeutics. Ex vivo transcorneal permeation experiments show that the permeation of hydrophilic drugs (i.e., tobramycin and diclofenac sodium salt), loaded in NHs, is significantly enhanced when compared to the free drug solutions. On the other side, the permeation of hydrophobic drugs (i.e., dexamethasone and piroxicam) is strongly dependent on the water solubility of the entrapped molecules. The obtained results suggest that NHs formulations can improve the ocular bioavailability of the instilled drugs by increasing their preocular retention time (hydrophobic drugs) or facilitating their permeation (hydrophilic drugs), thus opening the route for the application of HA-based NHs in the treatment of both anterior and posterior eye segment diseases.

17.
Cells ; 10(7)2021 07 18.
Article in English | MEDLINE | ID: mdl-34359985

ABSTRACT

IL-6 is a pleiotropic cytokine that can exert different and opposite effects. The muscle-induced and transient expression of IL-6 can act in an autocrine or paracrine manner, stimulating anabolic pathways associated with muscle growth, myogenesis, and with regulation of energy metabolism. In contrast, under pathologic conditions, including muscular dystrophy, cancer associated cachexia, aging, chronic inflammatory diseases, and other pathologies, the plasma levels of IL-6 significantly increase, promoting muscle wasting. Nevertheless, the specific physio-pathological role exerted by IL-6 in the maintenance of differentiated phenotype remains to be addressed. The purpose of this study was to define the role of increased plasma levels of IL-6 on muscle homeostasis and the mechanisms contributing to muscle loss. Here, we reported that increased plasma levels of IL-6 promote alteration in muscle growth at early stage of postnatal life and induce muscle wasting by triggering a shift of the slow-twitch fibers toward a more sensitive fast fiber phenotype. These findings unveil a role for IL-6 as a potential biomarker of stunted growth and skeletal muscle wasting.


Subject(s)
Aging/pathology , Interleukin-6/blood , Muscle Development , Muscular Atrophy/blood , Wasting Syndrome/blood , Animals , Animals, Newborn , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fibers, Skeletal/pathology , Neuromuscular Junction/pathology
18.
Neuroscience ; 473: 1-12, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34363869

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease for which effective treatment options are still lacking. ALS occurs in sporadic and familial forms which are clinically indistinguishable; about 20% of familial ALS cases are linked to mutations of the superoxide dismutase 1 (SOD1) gene. Fenretinide (FEN), a cancer chemopreventive and antiproliferative agent currently used in several clinical trials, is a multi-target drug which also exhibits redox regulation activities. We analyzed the effects of FEN on mutant SOD1 (mSOD1) toxicity in motoneuronal (NSC34) and a muscle (C2C12) cell lines and evaluated the impacts of chronic administration of a new nanomicellar fenretinide formulation (NanoMFen) on ALS disease progression in the SOD1G93A mouse model. The results showed that FEN significantly prevents the toxicity of mSOD1 expression in NSC34 motor neuron; furthermore, FEN is able to partially overcome the toxic effect of mSOD1 on the myogenic program of C2C12 muscle cells. Administration of NanoMFen ameliorates the disease progression and increases median survival of mSOD1G93A ALS mice, even when given after disease onset; beneficial effects in ALS mice, however, is restricted to female sex. Our data support the therapeutic potential of FEN against ALS-associated SOD1G93A mutant protein toxicity and promote further studies to elucidate specific cellular targets of the drug in ALS. Furthermore, the sex-related efficacy of NanoMFen in mSOD1G93A ALS mice strengthens the importance, in the perspective of a precision medicine approach, of gender pharmacology in ALS research.


Subject(s)
Amyotrophic Lateral Sclerosis , Fenretinide , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Models, Animal , Female , Fenretinide/pharmacology , Mice , Mice, Transgenic , Mutant Proteins , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics
19.
Cells ; 10(8)2021 08 10.
Article in English | MEDLINE | ID: mdl-34440812

ABSTRACT

ALS is a fatal neurodegenerative disease that is associated with muscle atrophy, motoneuron degeneration and denervation. Different mechanisms have been proposed to explain the pathogenesis of the disease; in this context, microRNAs have been described as biomarkers and potential pathogenetic factors for ALS. MyomiRs are microRNAs produced by skeletal muscle, and they play an important role in tissue homeostasis; moreover, they can be released in blood circulation in pathological conditions, including ALS. However, the functional role of myomiRs in muscle denervation has not yet been fully clarified. In this study, we analyze the levels of two myomiRs, namely miR-206 and miR-133a, in skeletal muscle and blood samples of denervated mice, and we demonstrate that surgical denervation reduces the expression of both miR-206 and miR-133a, while miR-206 but not miR-133a is upregulated during the re-innervation process. Furthermore, we quantify the levels of miR-206 and miR-133a in serum samples of two ALS mouse models, characterized by different disease velocities, and we demonstrate a different modulation of circulating myomiRs during ALS disease, according to the velocity of disease progression. Moreover, taking into account surgical and pathological denervation, we describe a different response to increasing amounts of circulating miR-206, suggesting a hormetic effect of miR-206 in relation to changes in neuromuscular communication.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , MicroRNAs/blood , Muscle, Skeletal/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/surgery , Animals , Biomarkers/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , Muscle Denervation , Muscle, Skeletal/innervation , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...