Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 16(7): 1838-50, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27498858

ABSTRACT

Neuronal injury triggers robust responses from glial cells, including altered gene expression and enhanced phagocytic activity to ensure prompt removal of damaged neurons. The molecular underpinnings of glial responses to trauma remain unclear. Here, we find that the evolutionarily conserved insulin-like signaling (ILS) pathway promotes glial phagocytic clearance of degenerating axons in adult Drosophila. We find that the insulin-like receptor (InR) and downstream effector Akt1 are acutely activated in local ensheathing glia after axotomy and are required for proper clearance of axonal debris. InR/Akt1 activity, it is also essential for injury-induced activation of STAT92E and its transcriptional target draper, which encodes a conserved receptor essential for glial engulfment of degenerating axons. Increasing Draper levels in adult glia partially rescues delayed clearance of severed axons in glial InR-inhibited flies. We propose that ILS functions as a key post-injury communication relay to activate glial responses, including phagocytic activity.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Insulin/metabolism , Membrane Proteins/genetics , Neuroglia/metabolism , Neurons/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Animals , Axotomy , Cell Communication , Drosophila Proteins/deficiency , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Gene Expression Regulation , Membrane Proteins/metabolism , Neuroglia/cytology , Neurons/pathology , Olfactory Nerve/surgery , Phagocytosis , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor Protein-Tyrosine Kinases/deficiency , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction
2.
Neurobiol Dis ; 46(1): 78-87, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22266106

ABSTRACT

The processing of Amyloid Precursor Proteins (APPs) results in several fragments, including soluble N-terminal ectodomains (sAPPs) and C-terminal intracellular domains (AICD). sAPPs have been ascribed neurotrophic or neuroprotective functions in cell culture, although ß-cleaved sAPPs can have deleterious effects and trigger neuronal cell death. Here we describe a neuroproprotective function of APP and fly APPL (Amyloid Precursor Protein-like) in vivo in several Drosophila mutants with progressive neurodegeneration. We show that expression of the N-terminal ectodomain is sufficient to suppress the progressive degeneration in these mutants and that the secretion of the ectodomain is required for this function. In addition, a protective effect is achieved by expressing kuzbanian (which has α-secretase activity) whereas expression of fly and human BACE aggravates the phenotypes, suggesting that the protective function is specifically mediated by the α-cleaved ectodomain. Furthermore, genetic and molecular studies suggest that the N-terminal fragments interact with full-length APPL activating a downstream signaling pathway via the AICD. Because we show protective effects in mutants that affect different genes (AMP-activated protein kinase, MAP1b, rasGAP), we propose that the protective effect is not due to a genetic interaction between APPL and these genes but a more general aspect of APP proteins. The result that APP proteins and specifically their soluble α-cleaved ectodomains can protect against progressive neurodegeneration in vivo provides support for the hypothesis that a disruption of the physiological function of APP could play a role in the pathogenesis of Alzheimer's Disease.


Subject(s)
Amyloid beta-Protein Precursor/physiology , Drosophila Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/genetics , Animals , Animals, Genetically Modified , Disease Models, Animal , Disease Progression , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Humans , Male , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation/physiology , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Protein Structure, Tertiary/physiology
3.
Dis Model Mech ; 4(5): 634-48, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21596710

ABSTRACT

A growing body of evidence supports the 'calcium hypothesis' of Alzheimer's disease (AD), which postulates that a variety of insults might disrupt the homeostatic regulation of neuronal calcium (Ca(2+)) in the brain, resulting in the progressive symptoms that typify the disease. However, despite ongoing efforts to develop new methods for testing therapeutic compounds that might be beneficial in AD, no single bioassay permits both rapid screening and in vivo validation of candidate drugs that target specific components of the Ca(2+) regulatory machinery. To address this issue, we have integrated four distinct model systems that provide complementary information about a trial compound: the human neuroblastoma MC65 line, which provides an in vitro model of amyloid toxicity; a transgenic Drosophila model, which develops age-dependent pathologies associated with AD; the 3×TgAD transgenic mouse, which recapitulates many of the neuropathological features that typify AD; and the embryonic nervous system of Manduca, which provides a novel in vivo assay for the acute effects of amyloid peptides on neuronal motility. To demonstrate the value of this 'translational suite' of bioassays, we focused on a set of clinically approved dihydropyridines (DHPs), a class of well-defined inhibitors of L-type calcium channels that have been suggested to be neuroprotective in AD. Among the DHPs tested in this study, we found that isradipine reduced the neurotoxic consequences of ß-amyloid accumulation in all four model systems without inducing deleterious side effects. Our results provide new evidence in support of the Ca(2+) hypothesis of AD, and indicate that isradipine represents a promising drug for translation into clinical trials. In addition, these studies also demonstrate that this continuum of bioassays (representing different levels of complexity) provides an effective means of evaluating other candidate compounds that target specific components of the Ca(2+) regulatory machinery and that therefore might be beneficial in the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Disease Models, Animal , Isradipine/therapeutic use , Translational Research, Biomedical , Alzheimer Disease/pathology , Amyloid beta-Peptides/toxicity , Animals , Biological Assay , Calcium Channels, L-Type/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Drosophila/drug effects , Humans , Isradipine/administration & dosage , Isradipine/pharmacology , Manduca/drug effects , Manduca/embryology , Mice , Mice, Transgenic , Neurons/drug effects , Neurons/pathology , Neurons/ultrastructure , Protective Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...