Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Transl Psychiatry ; 14(1): 209, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796504

ABSTRACT

Stress affects the brain and alters its neuroarchitecture and function; these changes can be severe and lead to psychiatric disorders. Recent evidence suggests that astrocytes and microglia play an essential role in the stress response by contributing to the maintenance of cerebral homeostasis. These cells respond rapidly to all stimuli that reach the brain, including stressors. Here, we used a recently validated rodent model of post-traumatic stress disorder in which rats can be categorized as resilient or vulnerable after acute inescapable footshock stress. We then investigated the functional, molecular, and morphological determinants of stress resilience and vulnerability in the prefrontal cortex, focusing on glial and neuronal cells. In addition, we examined the effects of a single subanesthetic dose of ketamine, a fast-acting antidepressant recently approved for the treatment of resistant depression and proposed for other stress-related psychiatric disorders. The present results suggest a prompt glial cell response and activation of the NF-κB pathway after acute stress, leading to an increase in specific cytokines such as IL-18 and TNF-α. This response persists in vulnerable individuals and is accompanied by a significant change in the levels of critical glial proteins such as S100B, CD11b, and CX43, brain trophic factors such as BDNF and FGF2, and proteins related to dendritic arborization and synaptic architecture such as MAP2 and PSD95. Administration of ketamine 24 h after the acute stress event rescued many of the changes observed in vulnerable rats, possibly contributing to support brain homeostasis. Overall, our results suggest that pivotal events, including reactive astrogliosis, changes in brain trophic factors, and neuronal damage are critical determinants of vulnerability to acute traumatic stress and confirm the therapeutic effect of acute ketamine against the development of stress-related psychiatric disorders.


Subject(s)
Astrocytes , Disease Models, Animal , Ketamine , Microglia , Stress Disorders, Post-Traumatic , Animals , Ketamine/pharmacology , Ketamine/administration & dosage , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Microglia/drug effects , Microglia/metabolism , Male , Rats , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Stress, Psychological/metabolism , Rats, Sprague-Dawley , NF-kappa B/metabolism
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685895

ABSTRACT

Alzheimer's disease (AD) is the most common age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The causes of the disease are not well understood, as it involves a complex interaction between genetic, environmental, and epigenetic factors. SAMP8 mice have been proposed as a model for studying late-onset AD, since they show age-related learning and memory deficits as well as several features of AD pathogenesis. Epigenetic changes have been described in SAMP8 mice, although sex differences have never been evaluated. Here we used western blot and qPCR analyses to investigate whether epigenetic markers are differentially altered in the dorsal hippocampus, a region important for the regulation of learning and memory, of 9-month-old male and female SAMP8 mice. We found that H3Ac was selectively reduced in male SAMP8 mice compared to male SAMR1 control mice, but not in female mice, whereas H3K27me3 was reduced overall in SAMP8 mice. Moreover, the levels of HDAC2 and JmjD3 were increased, whereas the levels of HDAC4 and Dnmt3a were reduced in SAMP8 mice compared to SAMR1. In addition, levels of HDAC1 were reduced, whereas Utx and Jmjd3 were selectively increased in females compared to males. Although our results are preliminary, they suggest that epigenetic mechanisms in the dorsal hippocampus are differentially regulated in male and female SAMP8 mice.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Female , Male , Animals , Mice , Hippocampus , Alzheimer Disease/genetics , Amnesia , Epigenesis, Genetic , Memory Disorders
3.
J Gerontol A Biol Sci Med Sci ; 78(11): 1935-1943, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37422721

ABSTRACT

Frailty is a geriatric syndrome characterized by age-related decline in physiological reserves and functions in multiple organ systems, including the musculoskeletal, neuroendocrine/metabolic, and immune systems. Animal models are essential to study the biological basis of aging and potential ways to delay the onset of age-related phenotypes. Unfortunately, validated animal models of frailty are still lacking in preclinical research. The senescence-accelerated prone-8 (SAMP8) mouse strain exhibits early cognitive loss that mimics the deterioration of learning and memory in the elderly and is widely used as a model of aging and neurodegenerative diseases. Here, we examined the frailty phenotype, which includes body weight, strength, endurance, activity, and slow walking speed, in male and female SAMP8 and senescence-accelerated mouse resistant (SAMR1) mice at 6- and 9-months of age. We found that the prevalence of frailty was higher in SAMP8 mice compared with SAMR1 mice, regardless of sex. The overall percentage of prefrail and frail mice was similar in male and female SAMP8 mice, although the percentage of frail mice was slightly higher in males than in females. In addition, we found sex- and frailty-specific changes in selected miRNAs blood levels. In particular, the levels of miR-34a-5p and miR-331-3p were higher in both prefrail and frail mice, whereas miR-26b-5p was increased only in frail mice compared with robust mice. Finally, levels of miR-331-3p were also increased in whole blood from a small group of frail patients. Overall, these results suggest that SAMP8 mice may be a useful mouse model for identifying potential biomarkers and studying biological mechanisms of frailty.


Subject(s)
Frailty , MicroRNAs , Humans , Mice , Male , Female , Animals , Aged , MicroRNAs/genetics , Frailty/genetics , Sex Characteristics , Aging/physiology , Phenotype , Biomarkers , Disease Models, Animal
4.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445990

ABSTRACT

Stress is a primary risk factor in the onset of neuropsychiatric disorders, including major depressive disorder (MDD). We have previously used the chronic mild stress (CMS) model of depression in male rats to show that CMS induces morphological, functional, and molecular changes in the hippocampus of vulnerable animals, the majority of which were recovered using acute subanesthetic ketamine in just 24 h. Here, we focused our attention on the medial prefrontal cortex (mPFC), a brain area regulating emotional and cognitive functions, and asked whether vulnerability/resilience to CMS and ketamine antidepressant effects were associated with molecular and functional changes in the mPFC of rats. We found that most alterations induced by CMS in the mPFC were selectively observed in stress-vulnerable animals and were rescued by acute subanesthetic ketamine, while others were found only in resilient animals or were induced by ketamine treatment. Importantly, only a few of these modifications were also previously demonstrated in the hippocampus, while most are specific to mPFC. Overall, our results suggest that acute antidepressant ketamine rescues brain-area-specific glutamatergic changes induced by chronic stress.


Subject(s)
Depressive Disorder, Major , Ketamine , Rats , Male , Animals , Ketamine/pharmacology , Ketamine/therapeutic use , Depression/drug therapy , Depression/etiology , Depressive Disorder, Major/drug therapy , Stress, Psychological , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Prefrontal Cortex
5.
Mol Psychiatry ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391530

ABSTRACT

Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown. Epigenetic mechanisms have been shown to mediate the effects of the environment on brain gene expression and behavior. MicroRNAs, small non-coding RNAs estimated to control the expression of about 60% of all genes by post-transcriptional regulation, are a fundamental epigenetic mechanism. Many microRNAs are expressed in the brain, where they work as fine-tuners of gene expression, with a key role in the regulation of homeostatic balance, and a likely influence on pro- or maladaptive brain changes. Here we have selected a number of microRNAs, which have been strongly implicated as mediators of the effects of stress in the brain and in the development of stress-related psychiatric disorders. For all of them recent evidence is reported, obtained from rodent stress models, manipulation of microRNAs levels with related behavioral changes, and clinical studies of stress-related psychiatric disorders. Moreover, we have performed a bioinformatic analysis of the predicted brain-expressed target genes of the microRNAs discussed, and found a central role for mechanisms involved in the regulation of synaptic function. The complex regulatory role of microRNAs has suggested their use as biomarkers for diagnosis and treatment response, as well as possible therapeutic drugs. While, microRNA-based diagnostics have registered advancements, particularly in oncology and other fields, and many biotech companies have launched miRNA therapeutics in their development pipeline, the development of microRNA-based tests and drugs for brain disorders is comparatively slower.

6.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240064

ABSTRACT

Traumatic stress is the main environmental risk factor for the development of psychiatric disorders. We have previously shown that acute footshock (FS) stress in male rats induces rapid and long-lasting functional and structural changes in the prefrontal cortex (PFC), which are partly reversed by acute subanesthetic ketamine. Here, we asked if acute FS may also induce any changes in glutamatergic synaptic plasticity in the PFC 24 h after stress exposure and whether ketamine administration 6 h after stress may have any effect. We found that the induction of long-term potentiation (LTP) in PFC slices of both control and FS animals is dependent on dopamine and that dopamine-dependent LTP is reduced by ketamine. We also found selective changes in ionotropic glutamate receptor subunit expression, phosphorylation, and localization at synaptic membranes induced by both acute stress and ketamine. Although more studies are needed to understand the effects of acute stress and ketamine on PFC glutamatergic plasticity, this first report suggests a restoring effect of acute ketamine, supporting the potential benefit of ketamine in limiting the impact of acute traumatic stress.


Subject(s)
Ketamine , Rats , Male , Animals , Ketamine/pharmacology , Dopamine/pharmacology , Neuronal Plasticity , Long-Term Potentiation , Prefrontal Cortex
7.
Genes (Basel) ; 14(3)2023 03 17.
Article in English | MEDLINE | ID: mdl-36981011

ABSTRACT

Stress is a primary risk factor for psychiatric disorders such as Major Depressive Disorder (MDD) and Post Traumatic Stress Disorder (PTSD). The response to stress involves the regulation of transcriptional programs, which is supposed to play a role in coping with stress. To evaluate transcriptional processes implemented after exposure to unavoidable traumatic stress, we applied microarray expression analysis to the PFC of rats exposed to acute footshock (FS) stress that were sacrificed immediately after the 40 min session or 2 h or 24 h after. While no substantial changes were observed at the single gene level immediately after the stress session, gene set enrichment analysis showed alterations in neuronal pathways associated with glia development, glia-neuron networking, and synaptic function. Furthermore, we found alterations in the expression of gene sets regulated by specific transcription factors that could represent master regulators of the acute stress response. Of note, these pathways and transcriptional programs are activated during the early stress response (immediately after FS) and are already turned off after 2 h-while at 24 h, the transcriptional profile is largely unaffected. Overall, our analysis provided a transcriptional landscape of the early changes triggered by acute unavoidable FS stress in the PFC of rats, suggesting that the transcriptional wave is fast and mild, but probably enough to activate a cellular response to acute stress.


Subject(s)
Depressive Disorder, Major , Stress Disorders, Post-Traumatic , Rats , Animals , Rats, Sprague-Dawley , Depressive Disorder, Major/metabolism , Prefrontal Cortex/metabolism , Adaptation, Psychological
8.
Transl Psychiatry ; 13(1): 62, 2023 02 18.
Article in English | MEDLINE | ID: mdl-36806044

ABSTRACT

Stress represents a main risk factor for psychiatric disorders. Whereas it is known that even a single trauma may induce psychiatric disorders in humans, the mechanisms of vulnerability to acute stressors have been little investigated. In this study, we generated a new animal model of resilience/vulnerability to acute footshock (FS) stress in rats and analyzed early functional, molecular, and morphological determinants of stress vulnerability at tripartite glutamate synapses in the prefrontal cortex (PFC). We found that adult male rats subjected to FS can be deemed resilient (FS-R) or vulnerable (FS-V), based on their anhedonic phenotype 24 h after stress exposure, and that these two populations are phenotypically distinguishable up to two weeks afterwards. Basal presynaptic glutamate release was increased in the PFC of FS-V rats, while depolarization-evoked glutamate release and synapsin I phosphorylation at Ser9 were increased in both FS-R and FS-V. In FS-R and FS-V rats the synaptic expression of GluN2A and apical dendritic length of prelimbic PFC layers II-III pyramidal neurons were decreased, while BDNF expression was selectively reduced in FS-V. Depolarization-evoked (carrier-mediated) glutamate release from astroglia perisynaptic processes (gliosomes) was selectively increased in the PFC of FS-V rats, while GLT1 and xCt levels were higher and GS expression reduced in purified PFC gliosomes from FS-R. Overall, we show for the first time that the application of the sucrose intake test to rats exposed to acute FS led to the generation of a novel animal model of resilience/vulnerability to acute stress, which we used to identify early determinants of maladaptive response related to behavioral vulnerability to stress.


Subject(s)
Astrocytes , Glutamic Acid , Humans , Adult , Male , Animals , Rats , Models, Animal , Prefrontal Cortex , Synapses
9.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675068

ABSTRACT

Stress is a key risk factor in the onset of neuropsychiatric disorders. The study of the mechanisms underlying stress response is important to understand the etiopathogenetic mechanisms and identify new putative therapeutic targets. In this context, microRNAs (miRNAs) have emerged as key regulators of the complex patterns of gene/protein expression changes in the brain, where they have a crucial role in the regulation of neuroplasticity, neurogenesis, and neuronal differentiation. Among them, miR-135a-5p has been associated with stress response, synaptic plasticity, and the antidepressant effect in different brain areas. Here, we used acute unavoidable foot-shock stress (FS) and chronic mild stress (CMS) on male rats to study whether miR-135a-5p was involved in stress-induced changes in the prefrontal cortex (PFC). Both acute and chronic stress decreased miR-135a-5p levels in the PFC, although after CMS the reduction was induced only in animals vulnerable to CMS, according to a sucrose preference test. MiR-135a-5p downregulation in the primary neurons reduced dendritic spine density, while its overexpression exerted the opposite effect. Two bioinformatically predicted target genes, Kif5c and Cplx1/2, were increased in FS rats 24 h after stress. Altogether, we found that miR-135a-5p might play a role in stress response in PFC involving synaptic mechanisms.


Subject(s)
MicroRNAs , Prefrontal Cortex , Stress, Physiological , Stress, Psychological , Animals , Male , Rats , Down-Regulation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Neurons/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/physiology , Acute Disease/psychology , Chronic Disease/psychology , Stress, Physiological/genetics , Stress, Psychological/genetics , Stress, Psychological/psychology , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Dendritic Spines/genetics , Dendritic Spines/metabolism , Dendritic Spines/pathology
10.
J Cell Physiol ; 237(10): 3834-3844, 2022 10.
Article in English | MEDLINE | ID: mdl-35908196

ABSTRACT

Stressful life events are considered major risk factors for the development of several psychiatric disorders, though people differentially cope with stress. The reasons for this are still largely unknown but could be accounted for by individual genetic variants, previous life events, or the kind of stressors. The human brain-derived neurotrophic factor (BDNF) Val66Met variant, which was found to impair intracellular trafficking and activity-dependent secretion of BDNF, has been associated with increased susceptibility to develop several neuropsychiatric disorders, although there is still some controversial evidence. On the other hand, acute stress has been consistently demonstrated to promote the release of glutamate in cortico-limbic regions and altered glutamatergic transmission has been reported in psychiatric disorders. However, it is not known if the BDNF Val66Met single-nucleotide polymorphism (SNP) affects the stress-induced presynaptic glutamate release. In this study, we exposed adult male BDNFVal/Val and BDNFVal/Met knock-in mice to 30 min of acute restraint stress. Plasma corticosterone levels, glutamate release, protein, and gene expression in the hippocampus were analyzed immediately after the end of the stress session. Acute restraint stress similarly increased plasma corticosterone levels and nuclear glucocorticoid receptor levels and phosphorylation in both BDNFVal/Val and BDNFVal/Met mice. However, acute restraint stress induced higher increases in hippocampal presynaptic release of glutamate, phosphorylation of cAMP-response element binding protein (CREB), and levels of the immediate early gene c-fos of BDNFVal/Met compared to BFNFVal/Val mice. Moreover, acute restraint stress selectively increased phosphorylation levels of synapsin I at Ser9 and at Ser603 in BDNFVal/Val and BDNFVal/Met mice, respectively. In conclusion, we report here that the BDNF Val66Met SNP knock-in mice display an altered response to acute restraint stress in terms of hippocampal glutamate release, CREB phosphorylation, and neuronal activation, compared to wild-type animals. Taken together, these results could partially explain the enhanced vulnerability to stressful events of Met carriers reported in both preclinical and clinical studies.


Subject(s)
Brain-Derived Neurotrophic Factor , Glutamic Acid , Animals , Male , Mice , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone , Genotype , Glutamic Acid/metabolism , Hippocampus/metabolism , Polymorphism, Single Nucleotide , Receptors, Glucocorticoid/genetics , Stress, Physiological , Synapsins/genetics , Synapsins/metabolism
11.
Sci Rep ; 12(1): 11055, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773275

ABSTRACT

Unpredictable chronic mild stress (CMS) is among the most popular protocols used to induce depressive-like behaviors such as anhedonia in rats. Differences in CMS protocols often result in variable degree of vulnerability, and the mechanisms behind stress resilience are of great interest in neuroscience due to their involvement in the development of psychiatric disorders, including major depressive disorder. Expression of depressive-like behaviors is likely driven by long-term alterations in the corticolimbic system and by downregulation of dopamine (DA) signaling. Although we have a deep knowledge about the dynamics of tonic and phasic DA release in encoding incentive salience and in response to acute/chronic stress, its modulatory action on cortical synaptic plasticity and the following implications on animal behavior remain elusive. Here, we show that the expression of DA-dependent synaptic plasticity in the medial prefrontal cortex (mPFC) is occluded in rats vulnerable to CMS, likely reflecting differential expression of AMPA receptors. Interestingly, such difference is not observed when rats are acutely treated with sub-anesthetic ketamine, possibly through the recruitment of dopaminergic nuclei such as the ventral tegmental area. In addition, by applying the synaptic activity sensor SynaptoZip in vivo, we found that chronic stress unbalances the synaptic drive from the infralimbic and prelimbic subregions of the mPFC toward the basolateral amygdala, and that this effect is counteracted by ketamine. Our results provide novel insights into the neurophysiological mechanisms behind the expression of vulnerability to stress, as well as behind the antidepressant action of ketamine.


Subject(s)
Depressive Disorder, Major , Ketamine , Animals , Depressive Disorder, Major/metabolism , Dopamine/metabolism , Humans , Ketamine/metabolism , Ketamine/pharmacology , Neuronal Plasticity , Prefrontal Cortex/physiology , Rats
12.
Front Pharmacol ; 13: 759626, 2022.
Article in English | MEDLINE | ID: mdl-35370690

ABSTRACT

Stress represents a major risk factor for psychiatric disorders, including post-traumatic stress disorder (PTSD). Recently, we dissected the destabilizing effects of acute stress on the excitatory glutamate system in the prefrontal cortex (PFC). Here, we assessed the effects of single subanesthetic administration of ketamine (10 mg/kg) on glutamate transmission and dendritic arborization in the PFC of footshock (FS)-stressed rats, along with changes in depressive, anxious, and fear extinction behaviors. We found that ketamine, while inducing a mild increase of glutamate release in the PFC of naïve rats, blocked the acute stress-induced enhancement of glutamate release when administered 24 or 72 h before or 6 h after FS. Accordingly, the treatment with ketamine 6 h after FS also reduced the stress-dependent increase of spontaneous excitatory postsynaptic current (sEPSC) amplitude in prelimbic (PL)-PFC. At the same time, ketamine injection 6 h after FS was found to rescue apical dendritic retraction of pyramidal neurons induced by acute stress in PL-PFC and facilitated contextual fear extinction. These results show rapid effects of ketamine in animals subjected to acute FS, in line with previous studies suggesting a therapeutic action of the drug in PTSD models. Our data are consistent with a mechanism of ketamine involving re-establishment of synaptic homeostasis, through restoration of glutamate release, and structural remodeling of dendrites.

13.
Genes (Basel) ; 13(2)2022 01 26.
Article in English | MEDLINE | ID: mdl-35205276

ABSTRACT

Frailty is an aging-related pathology, defined as a state of increased vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Extracellular microRNAs (miRNAs) were proposed as potential biomarkers of various disease conditions, including age-related pathologies. The primary objective of this study was to identify blood miRNAs that could serve as potential biomarkers and candidate mechanisms of frailty. Using the Fried index, we enrolled 22 robust and 19 frail subjects. Blood and urine samples were analysed for several biochemical parameters. We observed that sTNF-R was robustly upregulated in the frail group, indicating the presence of an inflammatory state. Further, by RNA-seq, we profiled 2654 mature miRNAs in the whole blood of the two groups. Expression levels of selected differentially expressed miRNAs were validated by qPCR, and target prediction analyses were performed for the dysregulated miRNAs. We identified 2 miRNAs able to significantly differentiate frail patients from robust subjects. Both miR-101-3p and miR-142-5p were found to be downregulated in the frail vs. robust group. Finally, using bioinformatics targets prediction tools, we explored the potential molecular mechanisms and cellular pathways regulated by the two miRNAs and potentially involved in frailty.


Subject(s)
Frailty , MicroRNAs , Biomarkers , Frailty/diagnosis , Frailty/genetics , Humans , MicroRNAs/metabolism , Real-Time Polymerase Chain Reaction
14.
Curr Neuropharmacol ; 20(12): 2267-2291, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35105292

ABSTRACT

Major depressive disorder (MDD) is a debilitating psychiatric disorder, the third leading global cause of disability. Regarding aetiopathogenetic mechanisms involved in the onset of depressive disorders, the interaction between genetic vulnerability traits and environmental factors is believed to play a major role. Although much is still to be elucidated about the mechanisms through which the environment can interact with genetic background shaping the disease risk, there is a general agreement about a key role of epigenetic marking. In this narrative review, we focused on the association between changes in DNA methylation patterns and MDD or depressive-like phenotype in animal models, as well as mechanisms of response to antidepressant drugs. We discussed studies presenting DNA methylation changes at specific genes of interest and profiling analyses in both patients and animal models of depression. Overall, we collected evidence showing that DNA methylation could not only be considered as a promising epigenetic biomarker of pathology but could also help in predicting antidepressant treatment efficacy. Finally, we discussed the hypothesis that specific changes in DNA methylation signature could play a role in aetiopathogenetic processes as well as in the induction of antidepressant effect.


Subject(s)
Depression , Depressive Disorder, Major , Animals , Depression/genetics , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Phenotype , Biomarkers , DNA , Epigenesis, Genetic
15.
Front Aging Neurosci ; 13: 763110, 2021.
Article in English | MEDLINE | ID: mdl-34867290

ABSTRACT

Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions. Accordingly, it has been suggested that frailty and cognitive impairment share common pathways, and some authors proposed "cognitive frailty" as a single complex phenotype. Nevertheless, so far, no clear common underlying pathways have been discovered for both conditions. microRNAs (miRNAs) have emerged as key fine-tuning regulators in most physiological processes, as well as pathological conditions. Importantly, miRNAs have been proposed as both peripheral biomarkers and potential molecular factors involved in physiological and pathological aging. In this review, we discuss the evidence linking changes of selected miRNAs expression with frailty and cognitive impairment. Overall, miR-92a-5p and miR-532-5p, as well as other miRNAs implicated in pathological aging, should be investigated as potential biomarkers (and putative molecular effectors) of cognitive frailty.

16.
Drug Discov Today ; 26(12): 2816-2838, 2021 12.
Article in English | MEDLINE | ID: mdl-34358693

ABSTRACT

Glutamatergic transmission is widely implicated in neuropsychiatric disorders, and the discovery that ketamine elicits rapid-acting antidepressant effects by modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) signaling has spurred a resurgence of interest in the field. This review explores agents in various stages of development for neuropsychiatric disorders that positively modulate AMPARs, both directly and indirectly. Despite promising preclinical research, few direct and indirect AMPAR positive modulators have progressed past early clinical development. Challenges such as low potency have created barriers to effective implementation. Nevertheless, the functional complexity of AMPARs sets them apart from other drug targets and allows for specificity in drug discovery. Additional effective treatments for neuropsychiatric disorders that work through positive AMPAR modulation may eventually be developed.


Subject(s)
Drug Development/methods , Mental Disorders/drug therapy , Receptors, AMPA/drug effects , Animals , Antidepressive Agents/pharmacology , Drug Discovery/methods , Humans , Ketamine/pharmacology , Mental Disorders/physiopathology , Receptors, AMPA/metabolism
17.
Neurobiol Stress ; 15: 100381, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34458512

ABSTRACT

Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown. Here, we found that miR-9-5p levels were selectively reduced in the hippocampus of rats vulnerable to Chronic Mild Stress (CMS), while acute subanesthetic ketamine restored its levels to basal condition in just 24h; miR-9-5p expression inversely correlated with the anhedonic phenotype. A decrease of miR-9-5p was reproduced in an in vitro model of stress, based on primary hippocampal neurons incubated with the stress hormone corticosterone. In both CMS animals and primary neurons, decreased miR-9-5p levels were associated with dendritic simplification, while treatment with ketamine completely rescued the changes. In vitro modulation of miR-9-5p expression showed a direct role of miR-9-5p in regulating dendritic length and spine density in mature primary hippocampal neurons. Among the putative target genes tested, Rest and Sirt1 were validated as biological targets in primary neuronal cultures. Moreover, in line with miR-9-5p changes, REST protein expression levels were remarkably increased in both CMS vulnerable animals and corticosterone-treated neurons, while ketamine completely abolished this alteration. Finally, the shortening of dendritic length in corticosterone-treated neurons was shown to be partly rescued by miR-9-5p overexpression and dependent on REST protein expression. Overall, our data unveiled the functional role of miR-9-5p in the remodeling of dendritic arbor induced by stress/corticosterone in vulnerable animals and its rescue by acute antidepressant treatment with ketamine.

18.
Biomolecules ; 11(6)2021 06 15.
Article in English | MEDLINE | ID: mdl-34203655

ABSTRACT

Anxiety disorders are common mental health diseases affecting up to 7% of people around the world. Stress is considered one of the major environmental risk factors to promote anxiety disorders through mechanisms involving epigenetic changes. Moreover, alteration in redox balance and increased reactive oxygen species (ROS) production have been detected in anxiety patients and in stressed-animal models of anxiety. Here we tested if the administration of apocynin, a natural origin antioxidant, may prevent the anxiety-like phenotype and reduction of histone acetylation induced by a subchronic forced swimming stress (FSS) paradigm. We found that apocynin prevented the enhanced latency time in the novelty-suppressed feeding test, and the production of malondialdehyde induced by FSS. Moreover, apocynin was able to block the upregulation of p47phox, a key subunit of the NADPH oxidase complex. Finally, apocynin prevented the rise of hippocampal Hdac1, Hdac4 and Hdac5, and the reduction of histone-3 acetylation levels promoted by FSS exposure. In conclusion, our results provide evidence that apocynin reduces the deleterious effect of stress and suggests that oxidative stress may regulate epigenetic mechanisms.


Subject(s)
Acetophenones/pharmacology , Anxiety Disorders/enzymology , Behavior, Animal/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Hippocampus/enzymology , Histone Deacetylases/biosynthesis , Stress, Psychological/enzymology , Animals , Anxiety Disorders/drug therapy , Anxiety Disorders/physiopathology , Hippocampus/physiopathology , Male , Mice , Stress, Psychological/drug therapy , Stress, Psychological/physiopathology
19.
Expert Opin Drug Discov ; 16(2): 147-157, 2021 02.
Article in English | MEDLINE | ID: mdl-32962432

ABSTRACT

INTRODUCTION: Depression is a highly debilitating psychiatric disorder and a worldwide health issue. Functional deficits in glutamatergic cortico-limbic areas are hypothesized to play a key role in the pathogenesis of the disease. Consistently, the clinical antidepressant efficacy of the N-Methyl-D-aspartate (NMDA) receptor antagonist ketamine gives hope for a new class of glutamatergic rapid-acting antidepressants. In this context, metabotropic glutamate (mGlu) receptors have received attention as interesting targets for new antidepressants. AREAS COVERED: The present review summarizes the preclinical evidence supporting the antidepressant effect of the pharmacological modulation of mGlu receptors. Antidepressant properties in animal models of mGlu1 antagonists, mGlu5 negative allosteric modulators (NAMs) and positive allosteric modulators (PAMs), mGlu2/3 agonists, PAMs, orthosteric antagonists and NAMs, mGlu4 and mGlu7 PAMs are reviewed. To date, orthosteric mGlu2/3 antagonists are the most promising compounds in development as antidepressants. EXPERT OPINION: Although accumulating clinical and preclinical evidence concur to confirm a primary role of glutamate transmission modulation for the induction of a rapid antidepressant effect, very little is still known about the cellular mechanisms involved. More mechanistic studies are required to understand the role of glutamate in depression and the therapeutic potential of drugs directly targeting the glutamate synapse.


Subject(s)
Antidepressive Agents/pharmacology , Drug Discovery/methods , Receptors, Metabotropic Glutamate/drug effects , Animals , Depression/drug therapy , Depression/physiopathology , Excitatory Amino Acid Antagonists/pharmacology , Humans , Ketamine/pharmacology , Receptors, Metabotropic Glutamate/metabolism
20.
Prog Neurobiol ; 198: 101905, 2021 03.
Article in English | MEDLINE | ID: mdl-32911010

ABSTRACT

Chronic constipation is one of the most prominent prodromal symptoms in Parkinson's disease (PD), and Lewy bodies, enriched with aggregated α-Synuclein (α-Syn), propagation from the gut into the brain has been proposed to play a key role in PD etiopathogenesis. BDNF (Brain-derived neurotrophic factor) and Netrin-1 promote both neuronal survival and regulate the gut functions. We hypothesize that C/EBPß represses BDNF and Netrin-1 in peripheral nervous system and central nervous system, contributing to GI tract and brain malfunctions in PD. To test the hypothesis, we performed the studies in both human PD gut tissues and BDNF or Netrin-1 gut conditional KO mice models. Lewy bodies with α-Syn aggregation and neuro-inflammation were measured in the colon and brain samples from PD patients and healthy controls and rotenone or vehicle-treated WT and CEBPß (+/-) mice. We show that both BDNF and Netrin-1 are strongly decreased in the brain and the gut of PD patients, and conditional KO of these trophic factors in the gut elicits dopaminergic neuronal loss, constipation and motor dysfunctions. Interestingly, the inflammation and oxidative stress-induced transcription factor C/EBPß acts as a robust repressor for both BDNF and Netrin-1 and suppresses the expression of trophic factors, and its levels inversely correlate with BDNF and Netrin-1 in PD patients. Our findings support that gut inflammation induces C/EBPß activation that leads to both BDNF and Netrin-1 reduction and triggers PD non-motor and motor symptoms. Possibly, C/EBPß-mediated biological events might be early diagnostic biomarkers for PD.


Subject(s)
Parkinson Disease , Animals , Brain-Derived Neurotrophic Factor , CCAAT-Enhancer-Binding Protein-beta , Constipation , Humans , Inflammation , Mice , Netrin-1
SELECTION OF CITATIONS
SEARCH DETAIL
...