Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Nutr Res ; 60: 32537, 2016.
Article in English | MEDLINE | ID: mdl-27707453

ABSTRACT

BACKGROUND: Low-density lipoprotein (LDL) oxidation is a risk factor for atherosclerosis. Lycopene and tomato-based products have been described as potent inhibitors of LDL oxidation. OBJECTIVES: To evaluate the effect of a 2-week supplementation with a carotenoid-rich tomato extract (CRTE) standardized for a 1:1 ratio of lycopene and phytosterols, on post-prandial LDL oxidation after a high-fat meal. DESIGN: In a randomized, double-blind, parallel-groups, placebo-controlled study, 146 healthy normal weight individuals were randomly assigned to a daily dose of CRTE standardized for tomato phytonutrients or placebo during 2 weeks. Oxidized LDL (OxLDL), glucose, insulin, and triglyceride (TG) responses were measured for 8 h after ingestion of a high-fat meal before and at the end of intervention. RESULTS: Plasma lycopene, phytofluene, and phytoene were increased throughout the study period in the CRTE group compared to placebo. CRTE ingestion significantly improved changes in OxLDL response to high-fat meal compared to placebo after 2 weeks (p<0.0001). Changes observed in glucose, insulin, and TG responses were not statistically significant after 2 weeks of supplementation, although together they may suggest a trend of favorable effect on metabolic outcomes after a high-fat meal. CONCLUSIONS: Two-week supplementation with CRTE increased carotenoids levels in plasma and improved oxidized LDL response to a high-fat meal in healthy normal weight individuals.

2.
BMC Complement Altern Med ; 14: 351, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25249234

ABSTRACT

BACKGROUND: Postprandial hyperglycemia is a known risk factor for the development of several health disorders including type 2 diabetes, obesity, oxidative stress, and cardiovascular diseases. One encouraging approach for a better control of postprandial glycemia is to reduce carbohydrate digestion. Cinnamon extracts have been known for managing blood glucose. However, their effects on inhibiting digestion of carbohydrate have been poorly analyzed to date. The aim of this study was to investigate the acute effect of a specific Ceylon cinnamon hydro-alcoholic extract (CCE) on carbohydrate digestion and post-meal blood glucose reduction. METHODS: In vitro enzymatic assays and in vivo starch tolerance tests in rats were designed as preclinical assays. Then, a randomized, double-blind, placebo-controlled, cross-over clinical trial was conducted in 18 healthy female and male volunteers. Following the intake of 1 g of CCE, the subjects ate a standardized meal. Blood samples were collected during the 2 hours following the meal to measure glucose and insulin concentrations. Areas under the curves were calculated and statistical differences between the CCE and placebo groups were analyzed using the Mann Whitney-Wilcoxon test. RESULTS: CCE has demonstrated in the in vitro study that it inhibited pancreatic alpha-amylase activity with an IC50 of 25 µg/mL. In the in vivo study, CCE was shown to acutely reduce the glycemic response to starch in a dose-dependent manner in rats. This effect was significant from the dose of 12.5 mg/kg of body weight. In both, the in vitro and in vivo studies, the hydro-alcoholic extract has shown to be more efficacious than the aqueous extract. In the human clinical trial, 1 g of CCE lowered the area under the curve of glycemia between 0 and 120 min by 14.8% (P = 0.15) and between 0 and 60 min by 21.2% (P < 0.05) compared to the placebo. This effect occurred without stimulating insulin secretion. No adverse effects were reported. CONCLUSION: These results suggest that Ceylon cinnamon hydro-alcoholic extract (CCE) may provide a natural and safe solution for the reduction of postprandial hyperglycemia and therefore help to reduce the risks of developing metabolic disorders. TRIAL REGISTRATION: ClinicalTrials.gov NCT02074423 (26/02/2014).


Subject(s)
Blood Glucose/drug effects , Cinnamomum zeylanicum/chemistry , Plant Extracts/pharmacology , Starch/metabolism , alpha-Amylases/drug effects , Adult , Animals , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Male , Plant Extracts/chemistry , Postprandial Period , Rats , Rats, Wistar , alpha-Amylases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...