Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(15): 8824-8830, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29979578

ABSTRACT

Protein catalyzed capture agents (PCCs) are synthetic antibody surrogates that can target a wide variety of biologically relevant proteins. As a step toward developing a high-throughput PCC pipeline, we report on the preparation of a barcoded rapid assay platform for the analysis of hits from PCC library screens. The platform is constructed by first surface patterning a micrometer scale barcode composed of orthogonal ssDNA strands onto a glass slide. The slide is then partitioned into microwells, each of which contains multiple copies of the full barcode. Biotinylated candidate PCCs from a click screen are assembled onto the barcode stripes using a complementary ssDNA-encoded cysteine-modified streptavidin library. This platform was employed to evaluate candidate PCC ligands identified from an epitope targeted in situ click screen against the two conserved allosteric switch regions of the Kirsten rat sarcoma (KRas) protein. A single microchip was utilized for the simultaneous evaluation of 15 PCC candidate fractions under more than a dozen different assay conditions. The platform also permitted more than a 10-fold savings in time and a more than 100-fold reduction in biological and chemical reagents relative to traditional multiwell plate assays. The best ligand was shown to exhibit an in vitro inhibition constant (IC50) of ∼24 µM.


Subject(s)
Allosteric Regulation/drug effects , DNA, Single-Stranded/chemistry , Enzyme Inhibitors/pharmacology , Microarray Analysis/methods , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Allosteric Site/drug effects , Biotinylation , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/chemistry , Humans , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Streptavidin/chemistry
2.
Angew Chem Int Ed Engl ; 54(45): 13219-24, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26377818

ABSTRACT

We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies.


Subject(s)
Drug Design , Epitopes/chemistry , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Proteins/chemistry , Ligands , Molecular Weight , Peptides, Cyclic/chemistry , Proteins/antagonists & inhibitors
3.
Biochemistry ; 54(2): 323-33, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25496420

ABSTRACT

More than 100 distinct mutations in the gene CuZnSOD encoding human copper-zinc superoxide dismutase (CuZnSOD) have been associated with familial amyotrophic lateral sclerosis (fALS), a fatal neuronal disease. Many studies of different mutant proteins have found effects on protein stability, catalytic activity, and metal binding, but without a common pattern. Notably, these studies were often performed under conditions far from physiological. Here, we have used experimental conditions of pH 7 and 37 °C and at an ionic strength of 0.2 M to mimic physiological conditions as close as possible in a sample of pure protein. Thus, by using NMR spectroscopy, we have analyzed amide hydrogen exchange of the fALS-associated I113T CuZnSOD variant in its fully metalated state, both at 25 and 37 °C, where (15)N relaxation data, as expected, reveals that CuZnSOD I113T exists as a dimer under these conditions. The local dynamics at 82% of all residues have been analyzed in detail. When compared to the wild-type protein, it was found that I113T CuZnSOD is particularly destabilized locally at the ion binding sites of loop 4, the zinc binding loop, which results in frequent exposure of the aggregation prone outer ß-strands I and VI of the ß-barrel, possibly enabling fibril or aggregate formation. A similar study (Museth, A. K., et al. (2009) Biochemistry, 48, 8817-8829) of amide hydrogen exchange at pH 7 and 25 °C on the G93A variant also revealed a selective destabilization of the zinc binding loop. Thus, a possible scenario in ALS is that elevated local dynamics at the metal binding region can result in toxic species from formation of new interactions at local ß-strands.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Point Mutation , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Amyotrophic Lateral Sclerosis/metabolism , Binding Sites , Copper/metabolism , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Structure, Secondary , Superoxide Dismutase/metabolism , Zinc/metabolism
4.
Biochim Biophys Acta ; 1655(1-3): 59-63, 2004 Apr 12.
Article in English | MEDLINE | ID: mdl-15100017

ABSTRACT

Laser flash-quench methods have been used to generate tyrosine and tryptophan radicals in structurally characterized rhenium-modified Pseudomonas aeruginosa azurins. Cu(I) to "Re(II)" electron tunneling in Re(H107) azurin occurs in the microsecond range. This reaction is much faster than that studied previously for Cu(I) to Ru(III) tunneling in Ru(H107) azurin, suggesting that a multistep ("hopping") mechanism might be involved. Although a Y108 radical can be generated by flash-quenching a Re(H107)M(II) (M=Cu, Zn) protein, the evidence suggests that it is not an active intermediate in the enhanced Cu(I) oxidation. Rather, the likely explanation is rapid conversion of Re(II)(H107) to deprotonated Re(I)(H107 radical), followed by electron tunneling from Cu(I) to the hole in the imidazole ligand.


Subject(s)
Azurin/chemistry , Azurin/metabolism , Copper/chemistry , Electron Transport , Models, Molecular , Oxidation-Reduction , Pseudomonas aeruginosa/metabolism , Rhenium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...