Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38919050

ABSTRACT

The carbon monoxide reduction reaction (CORR) toward C2+ and C3+ products such as propylene and cyclopropane can not only reduce anthropogenic emissions of CO and CO2 but also produce value-added organic chemicals for polymer and pharmaceutical industries. Here, we introduce the concept of triple atom catalysts (TACs) that have three intrinsically strained and active metal centers for reducing CO to C3+ products. We applied grand canonical potential kinetics (GCP-K) to screen 12 transition metals (M) supported by nitrogen-doped graphene denoted as M3N7, where M stands for Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au. We sought catalysts with favorable CO binding, hydrogen binding, and C-C dimerization energetics, identifying Fe3N7 and Ir3N7 as the best candidates. We then studied the entire reaction mechanism from CO to C3H6 and C2H4 as a function of applied potential via, respectively, 12-electron and 8-electron transfer pathways on Fe3N7 and Ir3N7. Density functional theory (DFT) predicts an overpotential of 0.17 VRHE for Fe3N7 toward propylene and an overpotential of 0.42 VRHE toward cyclopropane at 298.15 K and pH = 7. Also, DFT predicts an overpotential of 0.15 VRHE for Ir3N7 toward ethylene. This work provides fundamental insights into the design of advanced catalysts for C2+ and C3+ synthesis at room temperature.

2.
ACS Catal ; 14(11): 8353-8365, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38868105

ABSTRACT

Electrochemical CO2 reduction (CO2R) to formate is an attractive carbon emissions mitigation strategy due to the existing market and attractive price for formic acid. Tin is an effective electrocatalyst for CO2R to formate, but the underlying reaction mechanism and whether the active phase of tin is metallic or oxidized during reduction is openly debated. In this report, we used grand-canonical density functional theory and attenuated total reflection surface-enhanced infrared absorption spectroscopy to identify differences in the vibrational signatures of surface species during CO2R on fully metallic and oxidized tin surfaces. Our results show that CO2R is feasible on both metallic and oxidized tin. We propose that the key difference between each surface termination is that CO2R catalyzed by metallic tin surfaces is limited by the electrochemical activation of CO2, whereas CO2R catalyzed by oxidized tin surfaces is limited by the slow reductive desorption of formate. While the exact degree of oxidation of tin surfaces during CO2R is unlikely to be either fully metallic or fully oxidized, this study highlights the limiting behavior of these two surfaces and lays out the key features of each that our results predict will promote rapid CO2R catalysis. Additionally, we highlight the power of integrating high-fidelity quantum mechanical modeling and spectroscopic measurements to elucidate intricate electrocatalytic reaction pathways.

3.
J Phys Chem Lett ; 15(7): 1899-1907, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38345503

ABSTRACT

We investigated 2D transition metal borides (MBenes) for the efficient conversion of nitrate to ammonia. MBenes have been previously shown to bind oxygen with extraordinary strength, which should translate toward selective adsorption of nitrate in aqueous media. Using Density Functional Theory, we screened MBenes by computing their nitrate and water adsorption energies, seeking materials with strong nitrate binding and weak water binding. We identified MnB, CrB, and VB as the best materials for selective nitrate adsorption and proceeded by computing their free energies for generating ammonia. Of the three candidates, CrB requires the lowest overpotential, making it the best candidate. To further decrease the overpotential, we doped the CrB MBene with secondary transition metals and found the addition of Mn to the active site further reduced the overpotential. We then computed the reaction mechanism grand canonically to observe the effect of applied potential on the free energy landscape.

4.
J Am Chem Soc ; 145(28): 15507-15527, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37392467

ABSTRACT

We combine experimental and computational investigations to compare and understand catalytic arene alkenylation using the Pd(II) and Rh(I) precursors Pd(OAc)2 and [(η2-C2H4)2Rh(µ-OAc)]2 with arene, olefin, and Cu(II) carboxylate at elevated temperatures (>120 °C). Under specific conditions, previous computational and experimental efforts have identified heterotrimetallic cyclic PdCu2(η2-C2H4)3(µ-OPiv)6 and [(η2-C2H4)2Rh(µ-OPiv)2]2(µ-Cu) (OPiv = pivalate) species as likely active catalysts for these processes. Further studies of catalyst speciation suggest a complicated equilibrium between Cu(II)-containing complexes containing one Rh or Pd atom with complexes containing two Rh or Pd atoms. At 120 °C, Rh catalysis produces styrene >20-fold more rapidly than Pd. Also, at 120 °C, Rh is ∼98% selective for styrene formation, while Pd is ∼82% selective. Our studies indicate that Pd catalysis has a higher predilection toward olefin functionalization to form undesired vinyl ester, while Rh catalysis is more selective for arene/olefin coupling. However, at elevated temperatures, Pd converts vinyl ester and arene to vinyl arene, which is proposed to occur through low-valent Pd(0) clusters that are formed in situ. Regardless of arene functionality, the regioselectivity for alkenylation of mono-substituted arenes with the Rh catalyst gives an approximate 2:1 meta/para ratio with minimal ortho C-H activation. In contrast, Pd selectivity is significantly influenced by arene electronics, with electron-rich arenes giving an approximate 1:2:2 ortho/meta/para ratio, while the electron-deficient (α,α,α)-trifluorotoluene gives a 3:1 meta/para ratio with minimal ortho functionalization. Kinetic intermolecular arene ethenylation competition experiments find that Rh reacts most rapidly with benzene, and the rate of mono-substituted arene alkenylation does not correlate with arene electronics. In contrast, with Pd catalysis, electron-rich arenes react more rapidly than benzene, while electron-deficient arenes react less rapidly than benzene. These experimental findings, in combination with computational results, are consistent with the arene C-H activation step for Pd catalysis involving significant η1-arenium character due to Pd-mediated electrophilic aromatic substitution character. In contrast, the mechanism for Rh catalysis is not sensitive to arene-substituent electronics, which we propose indicates less electrophilic aromatic substitution character for the Rh-mediated arene C-H activation.

5.
Sci Data ; 10(1): 244, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117319

ABSTRACT

Perovskite oxides (ternary chemical formula ABO3) are a diverse class of materials with applications including heterogeneous catalysis, solid-oxide fuel cells, thermochemical conversion, and oxygen transport membranes. However, their multicomponent (chemical formula [Formula: see text]) chemical space is underexplored due to the immense number of possible compositions. To expand the number of computed [Formula: see text] compounds we report a dataset of 66,516 theoretical multinary oxides, 59,708 of which are perovskites. First, 69,407 [Formula: see text] compositions were generated in the a-b+a- Glazer tilting mode using the computationally-inexpensive Structure Prediction and Diagnostic Software (SPuDS) program. Next, we optimized these structures with density functional theory (DFT) using parameters compatible with the Materials Project (MP) database. Our dataset contains these optimized structures and their formation (ΔHf) and decomposition enthalpies (ΔHd) computed relative to MP tabulated elemental references and competing phases, respectively. This dataset can be mined, used to train machine learning models, and rapidly and systematically expanded by optimizing more SPuDS-generated [Formula: see text] perovskite structures using MP-compatible DFT calculations.

6.
J Chem Phys ; 158(7): 074703, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36813711

ABSTRACT

A highly active heterogenized molecular CO2 reduction catalyst on a conductive carbon support is investigated to identify if its improved catalytic activity can be attributed to strong electronic interactions between catalyst and support. The molecular structure and electronic character of a [Re+1(tBu-bpy)(CO)3Cl] (tBu-bpy = 4,4'-tert-butyl-2,2'-bipyridine) catalyst deposited on multiwalled carbon nanotubes are characterized using Re L3-edge x-ray absorption spectroscopy under electrochemical conditions and compared to the homogeneous catalyst. The Re oxidation state is characterized from the near-edge absorption region, while structural changes of the catalyst are assessed from the extended x-ray absorption fine structure under reducing conditions. Chloride ligand dissociation and a Re-centered reduction are both observed under applied reducing potential. The results confirm weak coupling of [Re(tBu-bpy)(CO)3Cl] with the support, since the supported catalyst exhibits the same oxidation changes as the homogeneous case. However, these results do not preclude strong interactions between a reduced catalyst intermediate and the support, preliminarily investigated here using quantum mechanical calculations. Thus, our results suggest that complicated linkage schemes and strong electronic interactions with the initial catalyst species are not required to improve the activity of heterogenized molecular catalysts.

7.
J Am Chem Soc ; 144(28): 12800-12806, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35816127

ABSTRACT

The nitrogen reduction reaction (NRR) is a renewable alternative to the energy- and CO2-intensive Haber-Bosch NH3 synthesis process but is severely limited by the low activity and selectivity of studied electrocatalysts. The Chevrel phase Fe2Mo6S8 has a surface Fe-S-Mo coordination environment that mimics the nitrogenase FeMo-cofactor and was recently shown to provide state-of-the-art activity and selectivity for NRR. Here, we elucidate the previously unknown NRR mechanism on Fe2Mo6S8 via grand-canonical density functional theory (GC-DFT) that realistically models solvated and biased surfaces. Fe sites of Fe2Mo6S8 selectively stabilize the key *NNH intermediate via a narrow band of free-atom-like surface d-states that selectively hybridize with p-states of *NNH, which results in Fe sites breaking NRR scaling relationships. These sharp d-states arise from an Fe-S bond dissociation during N2 adsorption that mimics the mechanism of the nitrogenase FeMo-cofactor. Furthermore, we developed a new GC-DFT-based approach for calculating transition states as a function of bias (GC-NEB) and applied it to produce a microkinetic model for NRR at Fe2Mo6S8 that predicts high activity and selectivity, in close agreement with experiments. Our results suggest new design principles that may identify effective NRR electrocatalysts that minimize the barriers for *N2 protonation and *NH3 desorption and that may be broadly applied to the rational discovery of stable, multinary electrocatalysts for other reactions where narrow bands of surface d-states can be tuned to selectively stabilize key reaction intermediates and guide selectivity toward a target product. Furthermore, our results highlight the importance of using GC-DFT and GC-NEB to accurately model electrocatalytic reactions.


Subject(s)
Molybdoferredoxin , Nitrogen , Models, Molecular , Molybdoferredoxin/chemistry , Nitrogen/chemistry , Nitrogenase/chemistry , Piperidines
8.
Phys Chem Chem Phys ; 24(28): 17289-17294, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35815404

ABSTRACT

The electronic structure and local coordination of binary (Mo6T8) and ternary Chevrel Phases (MxMo6T8) are investigated for a range of metal intercalant and chalcogen compositions. We evaluate differences in the Mo L3-edge and K-edge X-ray absorption near edge structure across the suite of chalcogenides MxMo6T8 (M = Cu, Ni, x = 1-2, T = S, Se, Te), quantifying the effect of compositional and structural modification on electronic structure. Furthermore, we highlight the expansion, contraction, and anisotropy of Mo6 clusters within these Chevrel Phase frameworks through extended X-ray absorption fine structure analysis. Our results show that metal-to-cluster charge transfer upon intercalation is dominated by the chalcogen acceptors, evidenced by significant changes in their respective X-ray absorption spectra in comparison to relatively unaffected Mo cations. These results explain the effects of metal intercalation on the electronic and local structure of Chevrel Phases across various chalcogen compositions, and aid in rationalizing electron distribution within the structure.

9.
J Chem Theory Comput ; 18(5): 3257-3267, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35442669

ABSTRACT

We report a bond-valence method (BVM) parameterization framework that captures density functional theory (DFT)-computed relative stabilities using the BVM global instability index (GII). We benchmarked our framework against a dataset of 188 experimentally observed ABO3 perovskite oxides, each of which was generated in 11 unique Glazer octahedral tilt systems and optimized using DFT. Our constrained minimization procedure minimizes the GIIs of the 188 perovskite ground state structures predicted by DFT while enforcing a linear correlation between the GIIs and DFT energies of all 2068 competing structures. GIIs based on BVM parameters determined using our framework correctly identified the DFT ground state perovskite structure in 135 of 188 compositions or one of the two lowest energy structures in 152 of 188 compositions. Using the most common approach to parameterize BVM, which minimizes the root-mean-square deviation of the BVM site discrepancy factors, GIIs correctly identified the DFT ground state perovskite structure in only 41 of 188 compositions. Our new parameterization framework is therefore a marked improvement over the existing procedure and an important first step toward BVM-based structure generation protocols that reproduce DFT.

10.
iScience ; 25(4): 103997, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35310940

ABSTRACT

This work maps the thermodynamics of electrochemically generated C-nucleophiles for reactive capture of CO2. We identify a linear relationship between the pKa, the reduction potential of a protonated nucleophile (E red ), and the nucleophile's free energy of CO2 binding ( Δ G b i n d ). Through synergistic experiments and computations, this study establishes a three-parameter correlation described by the equation Δ G b i n d = - 0.78 p K a + 4.28 E r e d + 20.95 for a series of twelve imidazol(in)ium/N-heterocyclic carbene pairs with an R 2 of 0.92. The correlation allows us to predict the Δ G b i n d of C-nucleophiles to CO2 using reduction potentials or pKas of imidazol(in)ium cations. The carbenes in this study were found to exhibit a wide range CO2 binding strengths, from strongly CO2 binding to nonspontaneous. This observation suggests that the Δ G b i n d of imidazol(in)ium-based carbenes is tunable to a desired strength by appropriate structural changes. This work sets the stage for systematic energetic tuning of electrochemically enabled reactive separations.

11.
ACS Appl Mater Interfaces ; 14(7): 9744-9753, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35147404

ABSTRACT

Reductant-activated functionalization is shown to enhance the methylation of chemically exfoliated MoS2 (ceMoS2) and ceWS2 by introducing excess negative charge to facilitate a nucleophilic attack reaction. Relative to methylation in the absence of a reductant, the reaction produces a twofold increase in coverage of ceWS2, from 25 to 52% coverage per WS2. However, at every potential, the methyl coverage on ceWS2 was ∼20% lower than that on ceMoS2. We applied grand canonical density functional theory to show that at constant potential, more negative charge is present on 1T'-MoS2 than on 1T'-WS2, making methylation both thermodynamically and kinetically more favorable for 1T'-MoS2 than 1T'-WS2. This effect was moderated when the reactions were compared at constant charge, emphasizing the importance of comparing the reactivity of materials at nominally identical electrode potentials.

12.
J Am Chem Soc ; 143(50): 21275-21285, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34882386

ABSTRACT

Development of efficient electrocatalysts for the CO2 reduction reaction (CO2RR) to multicarbon products has been constrained by high overpotentials and poor selectivity. Here, we introduce iron phosphide (Fe2P) as an earth-abundant catalyst for the CO2RR to mainly C2-C4 products with a total CO2RR Faradaic efficiency of 53% at 0 V vs RHE. Carbon product selectivity is tuned in favor of ethylene glycol formation with increasing negative bias at the expense of C3-C4 products. Both Grand Canonical-DFT (GC-DFT) calculations and experiments reveal that *formate, not *CO, is the initial intermediate formed from surface phosphino-hydrides and that the latter form ionic hydrides at both surface phosphorus atoms (H@Ps) and P-reconstructed Fe3 hollow sites (H@P*). Binding of these surface hydrides weakens with negative bias (reactivity increases), which accounts for both the shift to C2 products over higher C-C coupling products and the increase in the H2 evolution reaction (HER) rate. GC-DFT predicts that phosphino-hydrides convert *formate to *formaldehyde, the key intermediate for C-C coupling, whereas hydrogen atoms on Fe generate tightly bound *CO via sequential PCET reactions to H2O. GC-DFT predicts the peak in CO2RR current density near -0.1 V is due to a local maximum in the binding affinity of *formate and *formaldehyde at this bias, which together with the more labile C2 product affinity, accounts for the shift to ethylene glycol and away from C3-C4 products. Consistent with these predictions, addition of exogenous CO is shown to block all carbon product formation and lower the HER rate. These results demonstrate that the formation of ionic hydrides and their binding affinity, as modulated by the applied potential, controls the carbon product distribution. This knowledge provides new insight into the influence of hydride speciation and applied bias on the chemical reaction mechanism of CO2RR that is relevant to all transition metal phosphides.

13.
Dent Mater ; 37(12): 1865-1872, 2021 12.
Article in English | MEDLINE | ID: mdl-34627632

ABSTRACT

OBJECTIVES: This study demonstrates a spontaneous redox polymerization process located at the adhesive-composite interface that precedes photocure of the composite with the intent to improve bonding. METHODS: An aromatic amine and benzoyl peroxide redox initiator system was partitioned between BAPO-photoinitiated BisGMA/HEMA adhesive and BisGMA/TEGDMA resin-composites. The composite was placed on the photocured adhesive layer with a brief delay before photopolymerization of the composite layer. Micro-tensile bond strength between the adhesive and composite was assessed in comparison with the non-redox active control materials. RESULTS: The presence of amine or peroxide in these resins without the redox initiation contribution enhanced both the rate and the final conversion of the BAPO-based photopolymerizations. Control formulations using redox-only initiation showed active polymer formation starting at approximately 30 s when physical mixing of the redox components was involved; however, simply by waiting 60 s between composite placement and photocure provided adequate time for passive interfacial diffusion of benzoyl peroxide from the pre-cured adhesive into the overlaid aromatic amine-containing composite such that a sufficient degree of redox initiated interfacial polymerization occurred prior to the composite photocure. The result was a significant increase in the adhesive to composite micro-tensile bond strength with the failure site moved away from the mainly interfacial failure noted for the control. SIGNIFICANCE: The stress-free autonomous pre-conversion of a redox-initiated thin film of composite that then provides a compositionally homogeneous interface for composite photopolymerization offers a means to enhance at least short-term bond strength between the adhesive and composite phases during restorative placement.


Subject(s)
Dental Bonding , Resin Cements , Amines , Composite Resins , Dental Cements , Dentin , Dentin-Bonding Agents , Materials Testing , Peroxides , Polymerization , Tensile Strength
14.
Polym Chem ; 12(25): 3619-3628, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34484433

ABSTRACT

A combined experimental and computational study of the reactivities of seven commonly used Michael acceptors paired with two thiols within the framework of photobase-catalyzed thiol-Michael reactions is reported. The rate coefficients of the propagation (kP), reverse propagation (k-P), chain-transfer (kCT), and overall reaction (koverall) were experimentally determined and compared with the well-accepted electrophilicity parameters of Mayr and Parr, and DFT-calculated energetics. Both Mayr's and Parr's electrophilicity parameters predict the reactivities of these structurally varying vinyl functional groups well, covering a range of overall reaction rate coefficients from 0.5 to 6.2 s-1. To gain insight into the individual steps, the relative energies have been calculated using DFT for each of the stationary points along this step-growth reaction between ethanethiol and the seven alkenes. The free energies of the individual steps reveal the underlying factors that control the reaction barriers for propagation and chain transfer. Both the propagation and chain transfer steps are under kinetic control. These results serve as a useful guide for Michael acceptor selection to design and predict thiol-Michael-based materials with appropriate kinetic and material properties.

15.
Phys Chem Chem Phys ; 23(33): 17794-17802, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34382635

ABSTRACT

Diazaphospholenes have emerged as a promising class of metal-free hydride donors and have been implemented as molecular catalysts in several reduction reactions. Recent studies have also verified their radical reactivity as hydrogen atom donors. Experimental quantification of the hydricities and electrochemical properties of this unique class of hydrides has been limited by their sensitivity towards oxidation in open air and moist environments. Here, we implement quantum chemical density functional theory calculations to analyze the electrochemical catalytic cycle of diazaphospholenes in acetonitrile. We report computed hydricities, reduction potentials, pKa values, and bond dissociation free energies (BDFEs) for 64 P-based hydridic catalysts generated by functionalizing 8 main structures with 8 different electron donating/withdrawing groups. Our results demonstrate that a wide range of hydricities (29-66 kcal mol-1) and BDFEs (58-81 kcal mol-1) are attainable by functionalizing diazaphospholenes. Compared to the more common carbon-based hydrides, diazaphospholenes are predicted to require less negative reduction potentials to electrochemically regenerate hydrides with an equivalent hydridic strength, indicating their higher energy efficiency in the tradeoff between thermodynamic ability and reduction potential. We show that the tradeoff between the reducing ability and the energetic cost of regeneration can be optimized by varying the BDFE and the reorganization energy associated with hydride transfer (λHT), where lower BDFE and λHT correspond to more efficient catalysts. Aromatic phosphorus hydrides with predicted BDFEs of ∼62 kcal mol-1 and λHT's of ∼20 kcal mol-1 are found to require less negative reduction potentials than dihydropyridines and benzimidazoles with predicted BDFEs of ∼68 and ∼84 kcal mol-1 and λHT's of ∼40 and ∼50 kcal mol-1, respectively.

16.
J Am Chem Soc ; 143(24): 9113-9122, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34107683

ABSTRACT

The Chevrel phase (CP) is a class of molybdenum chalcogenides that exhibit compelling properties for next-generation battery materials, electrocatalysts, and other energy applications. Despite their promise, CPs are underexplored, with only ∼100 compounds synthesized to date due to the challenge of identifying synthesizable phases. We present an interpretable machine-learned descriptor (Hδ) that rapidly and accurately estimates decomposition enthalpy (ΔHd) to assess CP stability. To develop Hδ, we first used density functional theory to compute ΔHd for 438 CP compositions. We then generated >560 000 descriptors with the new machine learning method SIFT, which provides an easy-to-use approach for developing accurate and interpretable chemical models. From a set of >200 000 compositions, we identified 48 501 CPs that Hδ predicts are synthesizable based on the criterion that ΔHd < 65 meV/atom, which was obtained as a statistical boundary from 67 experimentally synthesized CPs. The set of candidate CPs includes 2307 CP tellurides, an underexplored CP subset with a predicted preference for channel site occupation by cation intercalants that is rare among CPs. We successfully synthesized five of five novel CP tellurides attempted from this set and confirmed their preference for channel site occupation. Our joint computational and experimental approach for developing and validating screening tools that enable the rapid identification of synthesizable materials within a sparse class is likely transferable to other materials families to accelerate their discovery.

17.
J Phys Chem Lett ; 12(9): 2306-2311, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33651629

ABSTRACT

Selective reduction of CO2 to formate represents an ongoing challenge in photoelectrocatalysis. To provide mechanistic insights, we investigate the kinetics of hydride transfer (HT) from a series of metal-free hydride donors to CO2. The observed dependence of experimental and calculated HT barriers on the thermodynamic driving force was modeled by using the Marcus hydride transfer formalism to obtain the insights into the effect of reorganization energies on the reaction kinetics. Our results indicate that even if the most ideal hydride donor were discovered, the HT to CO2 would exhibit sluggish kinetics (<100 turnovers per second at -0.1 eV driving force), indicating that the conventional HT may not be an appropriate mechanism for solar conversion of CO2 to formate. We propose that the conventional HT mechanism should not be considered for CO2 reduction catalysis and argue that the orthogonal HT mechanism, previously proposed to address thermodynamic limitations of this reaction, may also lead to lower kinetic barriers for CO2 reduction to formate.

18.
J Phys Chem Lett ; 12(6): 1696-1701, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33560856

ABSTRACT

Electrochemical routes provide an attractive alternative to the Haber-Bosch process for cheaper and more efficient ammonia (NH3) synthesis from N2 while avoiding the onerous environmental impact of the Haber-Bosch process. We prototype a strategy based on a eutectic mixture of phosphate molten salt. Using quantum-mechanics (QM)-based reactive molecular dynamics, we demonstrate that lithium nitride (Li3N) produced from the reduction of nitrogen gas (N2) by a lithium electrode can react with the phosphate molten salt to form ammonia. We extract reaction kinetics of the various steps from QM to identify conditions with favorable reaction rates for N2 reduction by a porous lithium electrode to form Li3N followed by protonation from phosphate molten salt (Li2HPO4-LiH2PO4 mixture) to selectively form NH3.

19.
Macromolecules ; 54(17): 7702-7715, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-35938043

ABSTRACT

Conversion plateaus rapidly in radical photopolymerizations (RPPs) following discontinuation of irradiation due to rapid termination of reactive radicals, which restricts the wider use of RPPs in applications that involve nonuniform light access including those with attenuated light transmission or irregular surfaces. Based on our recent report of a radical dark-curing photoinitiator (DCPI) that continues polymerization beyond the cessation of irradiation by enabling latent redox initiation with photo-released amine in the presence of a suitable oxidant, we developed a new DCPI with an absorption spectrum that extends well into the visible range. Our design process involved a series of computational investigations of candidate molecules, including a systematic study of substituents and their position-dependent effects on absorption characteristics, electronic transitions, and the photochemical mechanism and its associated energetics. Our quantum chemical computations identified the target compound 5,7-dimethoxy-6-bromo-3-aroylcoumarin-DMPT/BPh4 and predicted that it would facilitate the dark-curing mechanism by concurrent photo-radical generation and photo-induced release of an efficient redox reductant under visible irradiation. This reductant-tethered chromophore was then synthesized and optically characterized with UV-vis spectroscopy that revealed its strong visible-light absorption with a molar absorptivity of 5710 M-1 cm-1 at 405 nm and 50 M-1 cm-1 at 455 nm. We then demonstrated extensive dark-curing of >35% additional conversion over 25 min following brief activation of the shelf-stable one-part system by irradiation with a 455 nm LED that was ceased at 20% conversion. In contrast, shuttering irradiation of the control formulation at that same point resulted in immediate cessation of conversion, which plateaued at 20%. We determined a remarkable initiator efficiency of 2.82 that results from the additional redox-generated radicals with a 77% photo-reductant generation quantum yield. The combination of superior photo- and dark-curing efficiencies of this new visible DCPI is expected to open new application opportunities in RPP, especially those involving resins that are highly light attenuating, surfaces that possess irregular features that produce uneven irradiance, and production lines where continued dark-curing downstream of the light activation step enhances line efficiencies.

20.
ACS Appl Mater Interfaces ; 12(43): 48553-48564, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33074642

ABSTRACT

The design of multinary solid-state material systems that undergo reversible phase changes via changes in temperature and pressure provides a potential means of safely storing hydrogen. However, fully mapping the stabilities of known or newly targeted compounds relative to competing phases at reaction conditions has previously required many stringent experiments or computationally demanding calculations of each compound's change in Gibbs energy with respect to temperature, G(T). In this work, we have extended the approach of constructing chemical potential phase diagrams based on ΔGf(T) to enable the analysis of phase stability at non-zero temperatures. We first performed density functional theory calculations to compute the formation enthalpies of binary, ternary, and quaternary compounds within several compositional spaces of current interest for solid-state hydrogen storage. Temperature effects on solid compound stability were then accounted for using our recently introduced machine learned descriptor for the temperature-dependent contribution Gδ(T) to the Gibbs energy G(T). From these Gibbs energies, we evaluated each compound's stability relative to competing compounds over a wide range of conditions and show using chemical potential and composition phase diagrams that the predicted stable phases and H2 release reactions are consistent with experimental observations. This demonstrates that our approach rapidly computes the thermochemistry of hydrogen release reactions for compounds at sufficiently high accuracy relative to experiment to provide a powerful framework for analyzing hydrogen storage materials. This framework based on G(T) enables the accelerated discovery of active materials for a variety of technologies that rely on solid-state reactions involving these materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...