Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 224(1)2023 05 04.
Article in English | MEDLINE | ID: mdl-36866529

ABSTRACT

The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project.


Subject(s)
Databases, Genetic , Proteins , Gene Ontology , Proteins/genetics , Molecular Sequence Annotation , Computational Biology
2.
Nucleic Acids Res ; 50(W1): W57-W65, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35640593

ABSTRACT

The Annotation Query (AnnoQ) (http://annoq.org/) is designed to provide comprehensive and up-to-date functional annotations for human genetic variants. The system is supported by an annotation database with ∼39 million human variants from the Haplotype Reference Consortium (HRC) pre-annotated with sequence feature annotations by WGSA and functional annotations to Gene Ontology (GO) and pathways in PANTHER. The database operates on an optimized Elasticsearch framework to support real-time complex searches. This implementation enables users to annotate data with the most up-to-date functional annotations via simple queries instead of setting up individual tools. A web interface allows users to interactively browse the annotations, annotate variants and search variant data. Its easy-to-use interface and search capabilities are well-suited for scientists with fewer bioinformatics skills such as bench scientists and statisticians. AnnoQ also has an API for users to access and annotate the data programmatically. Packages for programming languages, such as the R package, are available for users to embed the annotation queries in their scripts. AnnoQ serves researchers with a wide range of backgrounds and research interests as an integrated annotation platform.


Subject(s)
Genetic Variation , Molecular Sequence Annotation , Software , Humans , Databases, Genetic , Internet , Molecular Sequence Annotation/methods , User-Computer Interface , Genetic Variation/genetics , Haplotypes/genetics , Programming Languages
3.
Protein Sci ; 31(1): 8-22, 2022 01.
Article in English | MEDLINE | ID: mdl-34717010

ABSTRACT

Phylogenetics is a powerful tool for analyzing protein sequences, by inferring their evolutionary relationships to other proteins. However, phylogenetics analyses can be challenging: they are computationally expensive and must be performed carefully in order to avoid systematic errors and artifacts. Protein Analysis THrough Evolutionary Relationships (PANTHER; http://pantherdb.org) is a publicly available, user-focused knowledgebase that stores the results of an extensive phylogenetic reconstruction pipeline that includes computational and manual processes and quality control steps. First, fully reconciled phylogenetic trees (including ancestral protein sequences) are reconstructed for a set of "reference" protein sequences obtained from fully sequenced genomes of organisms across the tree of life. Second, the resulting phylogenetic trees are manually reviewed and annotated with function evolution events: inferred gains and losses of protein function along branches of the phylogenetic tree. Here, we describe in detail the current contents of PANTHER, how those contents are generated, and how they can be used in a variety of applications. The PANTHER knowledgebase can be downloaded or accessed via an extensive API. In addition, PANTHER provides software tools to facilitate the application of the knowledgebase to common protein sequence analysis tasks: exploring an annotated genome by gene function; performing "enrichment analysis" of lists of genes; annotating a single sequence or large batch of sequences by homology; and assessing the likelihood that a genetic variant at a particular site in a protein will have deleterious effects.


Subject(s)
Databases, Protein , Evolution, Molecular , Phylogeny , Proteins , Sequence Analysis, Protein , Software , Molecular Sequence Annotation , Proteins/chemistry , Proteins/genetics
4.
Nucleic Acids Res ; 47(D1): D271-D279, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30371900

ABSTRACT

A growing number of whole genome sequencing projects, in combination with development of phylogenetic methods for reconstructing gene evolution, have provided us with a window into genomes that existed millions, and even billions, of years ago. Ancestral Genomes (http://ancestralgenomes.org) is a resource for comprehensive reconstructions of these 'fossil genomes'. Comprehensive sets of protein-coding genes have been reconstructed for 78 genomes of now-extinct species that were the common ancestors of extant species from across the tree of life. The reconstructed genes are based on the extensive library of over 15 000 gene family trees from the PANTHER database, and are updated on a yearly basis. For each ancestral gene, we assign a stable identifier, and provide additional information designed to facilitate analysis: an inferred name, a reconstructed protein sequence, a set of inferred Gene Ontology (GO) annotations, and a 'proxy gene' for each ancestral gene, defined as the least-diverged descendant of the ancestral gene in a given extant genome. On the Ancestral Genomes website, users can browse the Ancestral Genomes by selecting nodes in a species tree, and can compare an extant genome with any of its reconstructed ancestors to understand how the genome evolved.


Subject(s)
Databases, Genetic , Evolution, Molecular , Genes , Genome , Phylogeny , Animals , Eukaryota/genetics , Extinction, Biological , Genes, Archaeal , Genes, Bacterial , Genes, Protozoan , Molecular Sequence Annotation , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...