Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
mSphere ; : e0013924, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904396

ABSTRACT

Gene knockout studies suggest that ~300 genes in a bacterial genome and ~1,100 genes in a yeast genome cannot be deleted without loss of viability. These single-gene knockout experiments do not account for negative genetic interactions, when two or more genes can each be deleted without effect, but their joint deletion is lethal. Thus, large-scale single-gene deletion studies underestimate the size of a minimal gene set compatible with cell survival. In yeast Saccharomyces cerevisiae, the viability of all possible deletions of gene pairs (2-tuples), and of some deletions of gene triplets (3-tuples), has been experimentally tested. To estimate the size of a yeast minimal genome from that data, we first established that finding the size of a minimal gene set is equivalent to finding the minimum vertex cover in the lethality (hyper)graph, where the vertices are genes and (hyper)edges connect k-tuples of genes whose joint deletion is lethal. Using the Lovász-Johnson-Chvatal greedy approximation algorithm, we computed the minimum vertex cover of the synthetic-lethal 2-tuples graph to be 1,723 genes. We next simulated the genetic interactions in 3-tuples, extrapolating from the existing triplet sample, and again estimated minimum vertex covers. The size of a minimal gene set in yeast rapidly approaches the size of the entire genome even when considering only synthetic lethalities in k-tuples with small k. In contrast, several studies reported successful experimental reductions of yeast and bacterial genomes by simultaneous deletions of hundreds of genes, without eliciting synthetic lethality. We discuss possible reasons for this apparent contradiction.IMPORTANCEHow can we estimate the smallest number of genes sufficient for a unicellular organism to survive on a rich medium? One approach is to remove genes one at a time and count how many of such deletion strains are unable to grow. However, the single-gene knockout data are insufficient, because joint gene deletions may result in negative genetic interactions, also known as synthetic lethality. We used a technique from graph theory to estimate the size of minimal yeast genome from partial data on synthetic lethality. The number of potential synthetic lethal interactions grows very fast when multiple genes are deleted, revealing a paradoxical contrast with the experimental reductions of yeast genome by ~100 genes, and of bacterial genomes by several hundreds of genes.

2.
J Biol Chem ; 300(5): 107218, 2024 May.
Article in English | MEDLINE | ID: mdl-38522515

ABSTRACT

Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.


Subject(s)
Tombusvirus , Evolution, Molecular , Open Reading Frames , Protein Folding , Protein Structure, Secondary , Tombusvirus/genetics , Tombusvirus/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/chemistry , Amino Acid Sequence , Sequence Homology, Amino Acid , Models, Psychological , Protein Structure, Tertiary
4.
Arch Virol ; 168(7): 175, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37296227

ABSTRACT

This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2023. The entire ICTV membership was invited to vote on 174 taxonomic proposals that had been approved by the ICTV Executive Committee in July 2022, as well as a proposed revision of the ICTV Statutes. All proposals and the revised ICTV Statutes were approved by a majority of the voting membership. Of note, the ICTV continued the process of renaming existing species in accordance with the recently mandated binomial format and included gene transfer agents (GTAs) in the classification framework by classifying them as viriforms. In total, one class, seven orders, 31 families, 214 genera, and 858 species were created.


Subject(s)
Viruses , Humans , Viruses/genetics , Committee Membership
5.
Int J Mol Sci ; 24(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37373197

ABSTRACT

Molecular dynamics simulations of protein folding typically consider the polypeptide chain at equilibrium and in isolation from the cellular components. We argue that in order to understand protein folding as it occurs in vivo, it should be modeled as an active, energy-dependent process, in which the cellular protein-folding machine directly manipulates the polypeptide. We conducted all-atom molecular dynamics simulations of four protein domains, whose folding from the extended state was augmented by the application of rotational force to the C-terminal amino acid, while the movement of the N-terminal amino acid was restrained. We have shown earlier that such a simple manipulation of peptide backbone facilitated the formation of native structures in diverse α-helical peptides. In this study, the simulation protocol was modified, to apply the backbone rotation and movement restriction only for a short time at the start of simulation. This transient application of a mechanical force to the peptide is sufficient to accelerate, by at least an order of magnitude, the folding of four protein domains from different structural classes to their native or native-like conformations. Our in silico experiments show that a compact stable fold may be attained more readily when the motions of the polypeptide are biased by external forces and constraints.


Subject(s)
Molecular Dynamics Simulation , Peptides , Protein Domains , Rotation , Peptides/chemistry , Protein Folding , Amino Acids
6.
J Gen Virol ; 104(5)2023 05.
Article in English | MEDLINE | ID: mdl-37141106

ABSTRACT

The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community.


Subject(s)
Viruses , Viruses/classification , Classification
7.
PLoS Biol ; 21(2): e3001922, 2023 02.
Article in English | MEDLINE | ID: mdl-36780432

ABSTRACT

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Subject(s)
Bacteriophages , Viruses , Humans , Metagenomics , Phylogeny , Viruses/genetics
8.
Biomolecules ; 12(9)2022 09 06.
Article in English | MEDLINE | ID: mdl-36139088

ABSTRACT

Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded ß-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.


Subject(s)
Methyltransferases , S-Adenosylmethionine , Amino Acid Sequence , Aspartic Acid , Lysine/genetics , Methyltransferases/metabolism , Phylogeny , S-Adenosylmethionine/metabolism , Water
9.
Arch Virol ; 167(11): 2429-2440, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35999326

ABSTRACT

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2022. The entire ICTV was invited to vote on 174 taxonomic proposals approved by the ICTV Executive Committee at its annual meeting in July 2021. All proposals were ratified by an absolute majority of the ICTV members. Of note, the Study Groups have started to implement the new rule for uniform virus species naming that became effective in 2021 and mandates the binomial 'Genus_name species_epithet' format with or without Latinization. As a result of this ratification, the names of 6,481 virus species (more than 60 percent of all species names currently recognized by ICTV) now follow this format.


Subject(s)
Viruses , Committee Membership , Viruses/genetics
10.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35008947

ABSTRACT

The prevailing current view of protein folding is the thermodynamic hypothesis, under which the native folded conformation of a protein corresponds to the global minimum of Gibbs free energy G. We question this concept and show that the empirical evidence behind the thermodynamic hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the prediction of protein folds and their folding pathways so far have invariably failed except for some very small proteins, despite decades of intensive theory development and the enormous increase of computer power. The recent spectacular successes in protein structure prediction owe to evolutionary modeling of amino acid sequence substitutions enhanced by deep learning methods, but even these breakthroughs provide no information on the protein folding mechanisms and pathways. We discuss an alternative view of protein folding, under which the native state of most proteins does not occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins, which therefore fold into their native conformations only through interactions with the energy-dependent molecular machinery of living cells, in particular, the translation system and chaperones. Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium, active, energy-dependent process.


Subject(s)
Protein Conformation , Protein Folding , Proteins/chemistry , Thermodynamics , Algorithms , Kinetics , Models, Molecular , Models, Theoretical , Protein Refolding , Protein Stability , Proteins/chemical synthesis , Proteome , Proteomics/methods , Recombinant Proteins/chemistry , Solubility , Species Specificity
11.
Arch Virol ; 167(4): 1231-1234, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35043230

ABSTRACT

Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.


Subject(s)
Viruses, Unclassified , Viruses , DNA Viruses , Viruses/genetics , Writing
12.
BMC Plant Biol ; 22(1): 56, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35086479

ABSTRACT

BACKGROUND: Flowering signals are sensed in plant leaves and transmitted to the shoot apical meristems, where the formation of flowers is initiated. Searches for a diffusible hormone-like signaling entity ("florigen") went on for many decades, until a product of plant gene FT was identified as the key component of florigen in the 1990s, based on the analysis of mutants, genetic complementation evidence, and protein and RNA localization studies. Sequence homologs of FT protein are found throughout prokaryotes and eukaryotes; some eukaryotic family members appear to bind phospholipids or interact with the components of the signal transduction cascades. Most FT homologs are known to share a constellation of five charged residues, three of which, i.e., two histidines and an aspartic acid, are located at the rim of a well-defined cavity on the protein surface. RESULTS: We studied molecular features of the FT homologs in prokaryotes and analyzed their genome context, to find tentative evidence connecting the bacterial FT homologs with small molecule metabolism, often involving substrates that contain sugar or ribonucleoside moieties. We argue that the unifying feature of this protein family, i.e., a set of charged residues conserved at the sequence and structural levels, is more likely to be an enzymatic active center than a catalytically inert ligand-binding site. CONCLUSIONS: We propose that most of FT-related proteins are enzymes operating on small diffusible molecules. Those metabolites may constitute an overlooked essential ingredient of the florigen signal.


Subject(s)
Florigen/metabolism , Flowers/physiology , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/genetics
13.
J Gen Virol ; 103(12)2022 12.
Article in English | MEDLINE | ID: mdl-36748479

ABSTRACT

The International Committee on Taxonomy of Viruses recently adopted, and is gradually implementing, a binomial naming format for virus species. Although full Latinization of these names remains optional, a standardized nomenclature based on Latinized binomials has the advantage of comparability with all other biological taxonomies. As a language without living native speakers, Latin is more culturally neutral than many contemporary languages, and words built from Latin roots are already widely used in the language of science across the world. Conversion of established species names to Latinized binomials or creation of Latinized binomials de novo may seem daunting, but the rules for name creation are straightforward and can be implemented in a formulaic manner. Here, we describe approaches, strategies and steps for creating Latinized binomials for virus species without prior knowledge of Latin. We also discuss a novel approach to the automated generation of large batches of novel genus and species names. Importantly, conversion to a binomial format does not affect virus names, many of which are created from local languages.


Subject(s)
Terminology as Topic , Viruses , Viruses/classification
14.
Arch Virol ; 166(9): 2633-2648, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34231026

ABSTRACT

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2021. The entire ICTV was invited to vote on 290 taxonomic proposals approved by the ICTV Executive Committee at its meeting in October 2020, as well as on the proposed revision of the International Code of Virus Classification and Nomenclature (ICVCN). All proposals and the revision were ratified by an absolute majority of the ICTV members. Of note, ICTV mandated a uniform rule for virus species naming, which will follow the binomial 'genus-species' format with or without Latinized species epithets. The Study Groups are requested to convert all previously established species names to the new format. ICTV has also abolished the notion of a type species, i.e., a species chosen to serve as a name-bearing type of a virus genus. The remit of ICTV has been clarified through an official definition of 'virus' and several other types of mobile genetic elements. The ICVCN and ICTV Statutes have been amended to reflect these changes.


Subject(s)
Classification/methods , Phylogeny , Viruses, Unclassified/classification , Viruses/classification , International Cooperation , Viroids/classification , Viruses/genetics , Viruses/isolation & purification , Viruses, Unclassified/genetics , Viruses, Unclassified/isolation & purification
15.
F1000Res ; 10: 3, 2021.
Article in English | MEDLINE | ID: mdl-33633838

ABSTRACT

Background: Proteins fold robustly and reproducibly in vivo, but many cannot fold in vitro in isolation from cellular components. Despite the remarkable progress that has been achieved by the artificial intelligence approaches in predicting the protein native conformations, the pathways that lead to such conformations, either in vitro or in vivo, remain largely unknown. The slow progress in recapitulating protein folding pathways in silico may be an indication of the fundamental deficiencies in our understanding of folding as it occurs in nature. Here we consider the possibility that protein folding in living cells may not be driven solely by the decrease in Gibbs free energy and propose that protein folding in vivo should be modeled as an active energy-dependent process. The mechanism of action of such a protein folding machine might include direct manipulation of the peptide backbone. Methods: To show the feasibility of a protein folding machine, we conducted molecular dynamics simulations that were augmented by the application of mechanical force to rotate the C-terminal amino acid while simultaneously limiting the N-terminal amino acid movements. Results: Remarkably, the addition of this simple manipulation of peptide backbones to the standard molecular dynamics simulation indeed facilitated the formation of native structures in five diverse alpha-helical peptides. Steric clashes that arise in the peptides due to the forced directional rotation resulted in the behavior of the peptide backbone no longer resembling a freely jointed chain. Conclusions: These simulations show the feasibility of a protein folding machine operating under the conditions when the movements of the polypeptide backbone are restricted by applying external forces and constraints. Further investigation is needed to see whether such an effect may play a role during co-translational protein folding in vivo and how it can be utilized to facilitate folding of proteins in artificial environments.


Subject(s)
Artificial Intelligence , Protein Folding , Peptides , Protein Conformation , Proteins
16.
Arch Virol ; 165(11): 2737-2748, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32816125

ABSTRACT

This article reports the changes to virus classification and taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2020. The entire ICTV was invited to vote on 206 taxonomic proposals approved by the ICTV Executive Committee at its meeting in July 2019, as well as on the proposed revision of the ICTV Statutes. All proposals and the revision of the Statutes were approved by an absolute majority of the ICTV voting membership. Of note, ICTV has approved a proposal that extends the previously established realm Riboviria to encompass nearly all RNA viruses and reverse-transcribing viruses, and approved three separate proposals to establish three realms for viruses with DNA genomes.


Subject(s)
Classification/methods , Viruses/classification , Terminology as Topic , Virology/organization & administration , Viruses/isolation & purification
17.
mSphere ; 5(4)2020 07 01.
Article in English | MEDLINE | ID: mdl-32611703

ABSTRACT

The term "prion" was originally coined to describe the proteinaceous infectious agents involved in mammalian neurological disorders. More recently, a prion has been defined as a nonchromosomal, protein-based genetic element that is capable of converting the copies of its own benign variant into the prion form, with the new phenotypic effects that can be transmitted through the cytoplasm. Some prions are toxic to the cell, are able to aggregate and/or form amyloid structures, and may be infectious in the wild, but none of those traits are seen as an integral property of all prions. We propose that the definition of prion should be expanded, to include the inducible transmissible entities undergoing autocatalytic conversion and consisting of RNA rather than protein. We show that when seen in this framework, some naturally occurring RNAs, including ribozymes, riboswitches, viroids, viroid-like retroelements, and PIWI-interacting RNAs (piRNAs), possess several of the characteristic properties of prions.


Subject(s)
Prions/genetics , RNA/chemistry , RNA/genetics , Animals , Humans , Mice , Prions/chemistry , Protein Conformation
18.
RNA ; 26(7): 803-813, 2020 07.
Article in English | MEDLINE | ID: mdl-32284351

ABSTRACT

The ribonuclease A family of proteins is well studied from the biochemical and biophysical points of view, but its evolutionary origins are obscure, as no sequences homologous to this family have been reported outside of vertebrates. Recently, the spatial structure of the ribonuclease domain from a bacterial polymorphic toxin was shown to be closely similar to the structure of vertebrate ribonuclease A. The absence of sequence similarity between the two structures prompted a speculation of convergent evolution of bacterial and vertebrate ribonuclease A-like enzymes. We show that bacterial and homologous archaeal polymorphic toxin ribonucleases with a known or predicted ribonuclease A-like fold are distant homologs of the ribonucleases from the EndoU family, found in all domains of cellular life and in viruses. We also detected a homolog of vertebrate ribonucleases A in the transcriptome assembly of the sea urchin Mesocentrotus franciscanus These observations argue for the common ancestry of prokaryotic ribonuclease A-like and ubiquitous EndoU-like ribonucleases, and suggest a better-grounded scenario for the origin of animal ribonucleases A, which could have emerged in the deuterostome lineage, either by an extensive modification of a copy of an EndoU gene, or, more likely, by a horizontal acquisition of a prokaryotic immunity-mediating ribonuclease gene.


Subject(s)
Bacterial Toxins/genetics , Ribonuclease, Pancreatic/genetics , Amino Acid Sequence , Animals , Archaea/genetics , Bacteria/genetics , Evolution, Molecular , Phylogeny , Sequence Alignment , Vertebrates/genetics
19.
Arch Virol ; 165(5): 1263-1264, 2020 05.
Article in English | MEDLINE | ID: mdl-32065315

ABSTRACT

The article Binomial nomenclature for virus species: a consultation, written by Stuart G. Siddell, Peter J. Walker, Elliot J. Lefkowitz, Arcady R. Mushegian, Bas E. Dutilh.

20.
Arch Virol ; 165(2): 519-525, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31797129

ABSTRACT

The Executive Committee of the International Committee on Taxonomy of Viruses (ICTV) recognizes the need for a standardized nomenclature for virus species. This article sets out the case for establishing a binomial nomenclature and presents the advantages and disadvantages of different naming formats. The Executive Committee understands that adopting a binomial system would have major practical consequences, and invites comments from the virology community before making any decisions to change the existing nomenclature. The Executive Committee will take account of these comments in deciding whether to approve a standardized binomial system at its next meeting in October 2020. Note that this system would relate only to the formal names of virus species and not to the names of viruses.


Subject(s)
Classification/methods , Terminology as Topic , Viruses/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...