Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 21(2): 604-612, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31742385

ABSTRACT

The α-chitin nanofibril is an alternative to nanocellulose as a building-block for strong films and other nanomaterials. The hypothesis of high film strength for films based on mildly treated insect cuticles was tested. Fibrils from the cuticle of Ruspolia differens (a long-horned bush cricket grasshopper locally known as senene) are disintegrated by a mild process, subsequently characterized by transmission electron microscopy, NMR, Fourier transform infrared spectroscopy, and XRD, and used to prepare strong and transparent films. A mild process (with 20% NaOH treatment for 2 weeks and at room temperature) was used to largely remove the strongly bound protein associated with chitin. The purpose was to reduce chitin degradation. The native structure of chitin was indeed well preserved and close to the native state, as is supported by data for degree of acetylation, molar mass, crystallinity, and crystallite dimensions. The diameter of the smallest chitin fibrils was as small as 3-7 nm (average 6 nm) with lengths larger than or around 1 µm. A stable and well-dispersed colloidal chitin fibril suspension in water was achieved. A nanostructured chitin film prepared by filtration showed high optical transmittance (∼90%) and very high tensile strength (220 MPa). The high tensile strength was attributed to the well-preserved chitin structure, high intrinsic fibril strength, and high colloidal stability of the fibril suspension. Strong, transparent insect chitin films offer interesting alternatives to nanocellulose films because of different resource origins, surface chemistries, and potential antimicrobial properties.


Subject(s)
Chitin/chemistry , Grasshoppers/chemistry , Nanostructures/chemistry , Animals , Grasshoppers/anatomy & histology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Porosity , Spectroscopy, Fourier Transform Infrared , Tensile Strength , Water/chemistry , X-Ray Diffraction
2.
Nanoscale ; 11(22): 11001-11011, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31140534

ABSTRACT

Chitin nanofibrils (ChNF) are interesting high-value constituents for nanomaterials due to the enormous amount of waste from the seafood industry. So far, the reported ChNFs are substantially modified and chemically degraded (shortened) during extraction from the organisms. Here, highly individualized and long native-state ß-chitin nanofibrils from Illex argentinus squid pens are prepared. A mild treatment was developed to preserve the molar mass, aspect ratio, degree of acetylation and crystallite structure. The fibrils show a uniform diameter of 2-7 nm, very high aspect ratio (up to 750), high degree of acetylation (DA = 99%), and high molar mass (843 500 dalton). The powder X-ray diffraction analysis showed the preserved crystallite structure after protein removal. These "high quality" ChNFs were used to prepare nanostructured films via vacuum filtration from stable hydrocolloids. The effects of well-preserved "native" fibrils on morphology, and film properties (mechanical and optical), were studied and compared with earlier results based on coarser and shorter, chemically degraded chitin fibrils.


Subject(s)
Chitin/chemistry , Decapodiformes/chemistry , Nanofibers/chemistry , Animals , Nanofibers/ultrastructure , Particle Size
3.
Front Chem ; 2: 99, 2014.
Article in English | MEDLINE | ID: mdl-25478558

ABSTRACT

Chitosan is widely used in films for packaging applications. Chitosan reinforcement by stiff particles or fibers is usually obtained at the expense of lowered ductility and toughness. Here, chitosan film reinforcement by a new type of native chitin nanofibers is reported. Films are prepared by casting from colloidal suspensions of chitin in dissolved chitosan. The nanocomposite films are chitin nanofiber networks in chitosan matrix. Characterization is carried out by dynamic light scattering, quartz crystal microbalance, field emission scanning electron microscopy, tensile tests and dynamic mechanical analysis. The polymer matrix nanocomposites were produced in volume fractions of 8, 22, and 56% chitin nanofibers. Favorable chitin-chitosan synergy for colloidal dispersion is demonstrated. Also, lowered moisture sorption is observed for the composites, probably due to the favorable chitin-chitosan interface. The highest toughness (area under stress-strain curve) was observed at 8 vol% chitin content. The toughening mechanisms and the need for well-dispersed chitin nanofibers is discussed. Finally, desired structural characteristics of ductile chitin biocomposites are discussed.

4.
Chem Commun (Camb) ; 50(55): 7348-51, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24871427

ABSTRACT

A bifunctional protein composed of a highly negatively charged oyster shell protein and a chitin-binding domain enabled the formation of biohybrid materials through non-covalent surface modification of chitin nanofibres. The results demonstrate that specific biomolecular interactions offer a route for the formation of biosynthetic materials.


Subject(s)
Ceramics , Chitin/chemistry , Protein Engineering , Proteins/physiology , Crystallography, X-Ray , Proteins/chemistry , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...