Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37512611

ABSTRACT

Inscription of embedded photoluminescent microbits inside micromechanically positioned bulk natural diamond, LiF and CaF2 crystals was performed in sub-filamentation (geometrical focusing) regime by 525 nm 0.2 ps laser pulses focused by 0.65 NA micro-objective as a function of pulse energy, exposure and inter-layer separation. The resulting microbits were visualized by 3D-scanning confocal Raman/photoluminescence microscopy as conglomerates of photo-induced quasi-molecular color centers and tested regarding their spatial resolution and thermal stability via high-temperature annealing. Minimal lateral and longitudinal microbit separations, enabling their robust optical read-out through micromechanical positioning, were measured in the most promising crystalline material, LiF, as 1.5 and 13 microns, respectively, to be improved regarding information storage capacity by more elaborate focusing systems. These findings pave a way to novel optomechanical memory storage platforms, utilizing ultrashort-pulse laser inscription of photoluminescent microbits as carriers of archival memory.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986027

ABSTRACT

An ultrashort-pulse laser inscription of embedded birefringent microelements was performed inside bulk fluorite in pre-filamentation (geometrical focusing) and filamentation regimes as a function of laser wavelength, pulsewidth and energy. The resulting elements composed of anisotropic nanolattices were characterized by retardance (Ret) and thickness (T) quantities, using polarimetric and 3D-scanning confocal photoluminescence microscopy, respectively. Both parameters exhibit a monotonous increase versus pulse energy, going over a maximum at 1-ps pulsewidth at 515 nm, but decrease versus laser pulsewidth at 1030 nm. The resulting refractive-index difference (RID) Δn = Ret/T ~ 1 × 10-3 remains almost constant versus pulse energy and slightly decreases at a higher pulsewidth, generally being higher at 515 nm. The birefringent microelements were visualized using scanning electron microscopy and chemically characterized using energy-dispersion X-ray spectroscopy, indicating the increase of calcium and the contrary decrease of fluorine inside them due to the non-ablative inscription character. Dynamic far-field optical diffraction of the inscribing ultrashort laser pulses also demonstrated the accumulative inscription character, depending on the pulse energy and the laser exposure. Our findings revealed the underlying optical and material inscription processes and demonstrated the robust longitudinal homogeneity of the inscribed birefringent microstructures and the facile scalability of their thickness-dependent retardance.

3.
Materials (Basel) ; 16(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36984230

ABSTRACT

Light-trapping structures formed on surfaces of various materials have attracted much attention in recent years due to their important role in many applications of science and technology. This article discusses various methods for manufacturing light-trapping "black" silicon, namely laser, chemical and hybrid chemical/laser ones. In addition to the widely explored laser texturing and chemical etching methods, we develop a hybrid chemical/laser texturing method, consisting in laser post-texturing of pyramidal structures obtained after chemical etching. After laser treatments the surface morphology was represented by a chaotic relief of microcones, while after chemical treatment it acquired a chaotic pyramidal relief. Moreover, laser texturing of preliminarily chemically microtextured silicon wafers is shown to take five-fold less time compared to bare flat silicon. In this case, the chemically/laser-treated samples exhibit average total reflectance in the spectral range of 250-1100 nm lower by 7-10% than after the purely chemical treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...