Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675005

ABSTRACT

The flexibility and adaptability of soft robots enable them to perform various tasks in changing environments, such as flower picking, fruit harvesting, in vivo targeted treatment, and information feedback. However, these fulfilled functions are discrepant, based on the varied working environments, driving methods, and materials. To further understand the working principle and research emphasis of soft robots, this paper summarized the current research status of soft robots from the aspects of actuating methods (e.g., humidity, temperature, PH, electricity, pressure, magnetic field, light, biological, and hybrid drive), materials (like hydrogels, shape-memory materials, and other flexible materials) and application areas (camouflage, medical devices, electrical equipment, and grippers, etc.). Finally, we provided some opinions on the technical difficulties and challenges of soft robots to comprehensively comprehend soft robots, lucubrate their applications, and improve the quality of our lives.

2.
Int J Biol Macromol ; 259(Pt 2): 129201, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191110

ABSTRACT

Medical stents, artificial teeth, and grafts are just some of the many applications for additive manufacturing techniques like bio-degradable polylactic acid 3D printing. However, there are drawbacks associated with fused filament fabrication-fabricated objects, including poor surface quality, insufficient mechanical strength, and a lengthy construction time for even a relatively small object. Thus, this study aims to identify the finest polylactic acid 3D printing parameters to maximize print quality while minimizing energy use, print time, flexural and tensile strengths, average surface roughness, and print time, respectively. Specifically, the infill density, printing speed, and layer thickness are all variables that were selected. A full-central-composite design generated 20 samples to test the prediction models' experimental procedures. Validation trial tests were used to show that the experimental findings agreed with the predictions, and analysis of variance was used to verify the importance of the performance characteristics (ANOVA). At layer thickness = 0.26 mm, infill density = 84 %, and print speed = 68.87 mm/s, the following optimized values were measured for PLA: flexural strength = 70.1 MPa, tensile strength = 39.2 MPa, minimum surface roughness = 7.8 µm, print time = 47 min, and print energy = 0.18 kwh. Firms and clinicians may benefit from utilizing the developed, model to better predict the required surface characteristic for various aspects afore trials.


Subject(s)
Cytoskeleton , Polyesters , Physical Phenomena , Printing, Three-Dimensional
3.
Ann Agric Environ Med ; 30(2): 352-363, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37387387

ABSTRACT

INTRODUCTION AND OBJECTIVE: In recent years, load monitoring and analysis have become increasingly important in athletic training. The aim of this study was to provide a background for businesses and institutes to prepare for the implementation of load training and analysis in sports training, utilizing visual analysis of CiteSpace (CS) software. MATERIAL AND METHODS: A total of 169 original publications were obtained from Web of Science using a comprehensive list for analysis with the CS scientometrics program. The parameters included range (2012-2022), visualization (display of completely integrated networks), precise collection criteria (top 10%), node form (institution, author, area, reference cited; referenced author, key words, and journal), and trimming (pathfinder, slice network). RESULTS: Visual analysis of load monitoring and analysis for use in athletic training showed that 'questionnaire' was the most popular topic area in 2017 with 51 citations, while 'training programmes' emerged as a new area of study with 8 citations. In 2021 and 2022, the terms 'energy expenditure', 'responses', 'heart rate', and 'validity' gained popularity, increasing from a strength of 1.81 to 1.1. Liverpool John Moores University was the top institution, collaborating with 14 other organizations. The leading authors in this field were Close, Graeme L., and Gastin, Paul B. Most publications were found in the 'SPORTS MED' journal, with authors primarily based in the United Kingdom, the United States, and Australia. CONCLUSIONS: The findings of the study highlight the potential frontiers of load training analysis in the research and management of sports, emphasizing the importance of preparing businesses and institutes for the implementation of load training, and analysis in athletic training.


Subject(s)
Academies and Institutes , Sports , Humans , Bibliometrics , Health Facilities , Heart Rate
4.
Materials (Basel) ; 16(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37176273

ABSTRACT

Professionals in industries are making progress in creating predictive techniques for evaluating critical characteristics and reactions of engineered materials. The objective of this investigation is to determine the optimal settings for a 3D printer made of acrylonitrile butadiene styrene (ABS) in terms of its conflicting responses (flexural strength (FS), tensile strength (TS), average surface roughness (Ra), print time (T), and energy consumption (E)). Layer thickness (LT), printing speed (PS), and infill density (ID) are all quantifiable characteristics that were chosen. For the experimental methods of the prediction models, twenty samples were created using a full central composite design (CCD). The models were verified by proving that the experimental results were consistent with the predictions using validation trial tests, and the significance of the performance parameters was confirmed using analysis of variance (ANOVA). The most crucial element in obtaining the desired Ra and T was LT, whereas ID was the most crucial in attaining the desired mechanical characteristics. Numerical multi-objective optimization was used to achieve the following parameters: LT = 0.27 mm, ID = 84 percent, and PS = 51.1 mm/s; FS = 58.01 MPa; TS = 35.8 MPa; lowest Ra = 8.01 m; lowest T = 58 min; and E = 0.21 kwh. Manufacturers and practitioners may profit from using the produced numerically optimized model to forecast the necessary surface quality for different aspects before undertaking trials.

5.
Article in English | MEDLINE | ID: mdl-36900941

ABSTRACT

In recent years, there has been a growing amount of discussion on the use of big data to prevent and treat pandemics. The current research aimed to use CiteSpace (CS) visual analysis to uncover research and development trends, to help academics decide on future research and to create a framework for enterprises and organizations in order to plan for the growth of big data-based epidemic control. First, a total of 202 original papers were retrieved from Web of Science (WOS) using a complete list and analyzed using CS scientometric software. The CS parameters included the date range (from 2011 to 2022, a 1-year slice for co-authorship as well as for the co-accordance assessment), visualization (to show the fully integrated networks), specific selection criteria (the top 20 percent), node form (author, institution, region, reference cited, referred author, journal, and keywords), and pruning (pathfinder, slicing network). Lastly, the correlation of data was explored and the findings of the visualization analysis of big data pandemic control research were presented. According to the findings, "COVID-19 infection" was the hottest cluster with 31 references in 2020, while "Internet of things (IoT) platform and unified health algorithm" was the emerging research topic with 15 citations. "Influenza, internet, China, human mobility, and province" were the emerging keywords in the year 2021-2022 with strength of 1.61 to 1.2. The Chinese Academy of Sciences was the top institution, which collaborated with 15 other organizations. Qadri and Wilson were the top authors in this field. The Lancet journal accepted the most papers in this field, while the United States, China, and Europe accounted for the bulk of articles in this research. The research showed how big data may help us to better understand and control pandemics.


Subject(s)
COVID-19 , Humans , United States , Data Science , Europe , Big Data , Pandemics
7.
Comput Methods Programs Biomed ; 225: 107059, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35964422

ABSTRACT

BACKGROUND AND OBJECTIVE: At present, there is a lack of efficient modeling methods for bionic artificial bone scaffolds, and the tissue fluid/nutrient mass transport characteristics of bone scaffolds has not been evaluated sufficiently. This study aims to explore an effective and efficient modeling method for biomimetic porous bone scaffolds for biological three-dimensional printing based on the imitation of the histomorphological characteristics of human vertebral cancellous bone. The fluid mass transport and mechanical characteristics of the porous scaffolds were evaluated and compared with those of a human cancellous bone,and the relationship between the geometric parameters (e.g., the size, number, shape of pores and porosity) and the performence of biomimetic porous bone scaffolds are revealed. METHODS: The bionic modeling design method proposed in this study considers the biological characteristics of vertebral cancellous tissue and performs imitation and design of vertebrae-like two-dimensional slices images.It then reconstructs the slices layer-by-layer to form porous scaffolds with a three-dimensional reconstruction method, similar to computed tomography image reconstruction. By controlling the design parameters, this method can easily realize the formation of plate-like (femoral cancellous bone-like) or rod-like (vertebral cancellous bone-like) porous scaffolds. The flow characterization of porous structures was performed using the computational fluid simulation method. RESULTS: The flow characterization results showed that the permeability of the porous scaffolds and human bone was 10-8∼10-9m2,and when the porosity of the porous scaffolds was higher than 70%, the permeability was higher than that of human vertebrae with a porosity of 82%. The maximum shear stress of the designed porous scaffolds and human vertebra were less than 0.8Mpa, which was conducive to cell adhesion, cell migration, and cell differentiation. The results of 3D printing and mechanical testing showed good printability and reflected the relationship between the mechanical properties and design parameters. CONCLUSIONS: The design method proposed in this study has many controllable parameters, which can be adjusted to generate diversified functional porous structures to meet specific needs, increase the potential of bone scaffold design, and leave room for meeting the new requirements for bone scaffold characteristics in the future.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Bionics , Bone and Bones , Humans , Porosity , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
8.
Materials (Basel) ; 15(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955141

ABSTRACT

This research objective is to optimize the surface roughness of Nylon-6 (PA-6) and Acrylonitrile Butadiene Styrene (ABS) by analyzing the parametric effects of the Fused Filament Fabrication (FFF) technique of Three-Dimensional Printing (3DP) parameters. This article discusses how to optimize the surface roughness using Taguchi analysis by the S/N ratio, ANOVA, and modeling methods. The effects of ABS parameters (initial line thickness, raster width, bed temperature, build pattern, extrusion temperature, print speed, and layer thickness) and PA-6 parameters (layer thickness, print speed, extrusion temperature, and build pattern) were investigated with the average surface roughness (Ra) and root-mean-square average surface roughness (Rq) as response parameters. Validation tests revealed that Ra and Rq decreased significantly. After the optimization, the Ra-ABS and Rq-PA-6 for the fabricated optimized values were 1.75 µm and 21.37 µm, respectively. Taguchi optimization of Ra-ABS, Rq-ABS, Ra-PA-6, and Rq-PA-6 was performed to make one step forward to use them in further research and prototypes.

9.
Prog Addit Manuf ; : 1-35, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-38625342

ABSTRACT

The exponential rise of healthcare problems like human aging and road traffic accidents have developed an intrinsic challenge to biomedical sectors concerning the arrangement of patient-specific biomedical products. The additively manufactured implants and scaffolds have captured global attention over the last two decades concerning their printing quality and ease of manufacturing. However, the inherent challenges associated with additive manufacturing (AM) technologies, namely process selection, level of complexity, printing speed, resolution, biomaterial choice, and consumed energy, still pose several limitations on their use. Recently, the whole world has faced severe supply chain disruptions of personal protective equipment and basic medical facilities due to a respiratory disease known as the coronavirus (COVID-19). In this regard, local and global AM manufacturers have printed biomedical products to level the supply-demand equation. The potential of AM technologies for biomedical applications before, during, and post-COVID-19 pandemic alongwith its relation to the industry 4.0 (I4.0) concept is discussed herein. Moreover, additive manufacturing technologies are studied in this work concerning their working principle, classification, materials, processing variables, output responses, merits, challenges, and biomedical applications. Different factors affecting the sustainable performance in AM for biomedical applications are discussed with more focus on the comparative examination of consumed energy to determine which process is more sustainable. The recent advancements in the field like 4D printing and 5D printing are useful for the successful implementation of I4.0 to combat any future pandemic scenario. The potential of hybrid printing, multi-materials printing, and printing with smart materials, has been identified as hot research areas to produce scaffolds and implants in regenerative medicine, tissue engineering, and orthopedic implants.

10.
Nano Converg ; 8(1): 37, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34851459

ABSTRACT

Additively manufactured nano-MEH systems are widely used to harvest energy from renewable and sustainable energy sources such as wind, ocean, sunlight, raindrops, and ambient vibrations. A comprehensive study focusing on in-depth technology evolution, applications, problems, and future trends of specifically 3D printed nano-MEH systems with an energy point of view is rarely conducted. Therefore, this paper looks into the state-of-the-art technologies, energy harvesting sources/methods, performance, implementations, emerging applications, potential challenges, and future perspectives of additively manufactured nano-mechanical energy harvesting (3DP-NMEH) systems. The prevailing challenges concerning renewable energy harvesting capacities, optimal energy scavenging, power management, material functionalization, sustainable prototyping strategies, new materials, commercialization, and hybridization are discussed. A novel solution is proposed for renewable energy generation and medicinal purposes based on the sustainable utilization of recyclable municipal and medical waste generated during the COVID-19 pandemic. Finally, recommendations for future research are presented concerning the cutting-edge issues hurdling the optimal exploitation of renewable energy resources through NMEHs. China and the USA are the most significant leading forces in enhancing 3DP-NMEH technology, with more than 75% contributions collectively. The reported output energy capacities of additively manufactured nano-MEH systems were 0.5-32 mW, 0.0002-45.6 mW, and 0.3-4.67 mW for electromagnetic, piezoelectric, and triboelectric nanogenerators, respectively. The optimal strategies and techniques to enhance these energy capacities are compiled in this paper.

11.
J Manuf Syst ; 60: 709-733, 2021 Jul.
Article in English | MEDLINE | ID: mdl-35068653

ABSTRACT

Sustainable and cleaner manufacturing systems have found broad applications in industrial processes, especially aerospace, automotive and power generation. Conventional manufacturing methods are highly unsustainable regarding carbon emissions, energy consumption, material wastage, costly shipment and complex supply management. Besides, during global COVID-19 pandemic, advanced fabrication and management strategies were extremely required to fulfill the shortfall of basic and medical emergency supplies. Three-dimensional printing (3DP) reduces global energy consumption and CO2 emissions related to industrial manufacturing. Various renewable energy harvesting mechanisms utilizing solar, wind, tidal and human potential have been fabricated through additive manufacturing. 3D printing aided the manufacturing companies in combating the deficiencies of medical healthcare devices for patients and professionals globally. In this regard, 3D printed medical face shields, respiratory masks, personal protective equipment, PLA-based recyclable air filtration masks, additively manufactured ideal tissue models and new information technology (IT) based rapid manufacturing are some significant contributions of 3DP. Furthermore, a bibliometric study of 3D printing research was conducted in CiteSpace. The most influential keywords and latest research frontiers were found and the 3DP knowledge was categorized into 10 diverse research themes. The potential challenges incurred by AM industry during the pandemic were categorized in terms of design, safety, manufacturing, certification and legal issues. Significantly, this study highlights the versatile role of 3DP in battle against COVID-19 pandemic and provides up-to-date research frontiers, leading the readers to focus on the current hurdles encountered by AM industry, henceforth conduct further investigations to enhance 3DP technology.

12.
Materials (Basel) ; 13(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878119

ABSTRACT

Carbon dioxide (CO2) laser cutting finds one of its most relevant applications in the processing of a wide variety of polymeric materials like thermoplastics and thermosetting plastics. Different types of polymeric materials like polypropylene (PP), polymethyl methacrylate (PMMA), low- and high-density polyethylene (LDPE, HDPE), are processed by laser for different household as well as commercial products in the industry. The reason is their easy availability and economical aspect in the market. The problems associated with laser cutting include heat-affected zone (HAZ) generated on the cut surface, kerf width (KW), surface roughness (SR), dross formation, and striations formation. Furthermore, other related problems include taper cutting for deep parts and high-power consumption. The primary purpose of this work is a comprehensive literature review in CO2 laser cutting of polymeric materials. The influence of parametric variation on the cut quality is also explained. Cut quality in terms of KW, SR, HAZ, dross formation, and striations formation is analyzed by optimizing cutting variables like laser power (PL), cutting speed (CS), assist gas pressure (Pg), pulse frequency, nozzle type and its diameter, and stand-off distance (SOD). The effects of the laser cutting on the properties of different thermoplastics/thermosetting materials are also reported. However, this topic requires further studies on exploring the range of polymeric materials, and their optimal parameters selection to improve the cut quality. Therefore, the research gaps and future research directions are also highlighted in the context of CO2 laser cutting for polymeric materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...