Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(3): 1087-1098, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38099621

ABSTRACT

A series of luminescent Cu4I4 clusters with stair-step, cubane, and octahedral geometries supported by a novel type of cyclic As,N-ligand, pyridyl-containing 10-phenoxarsines, were synthesized and characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction analysis. An unusual arrangement of As,N-bidentate and µ2-iodo ligands was found in the octahedral cluster. The structural diversity of the Cu(I) complexes is reflected in their photophysical properties: the phosphorescence spectra of the compounds display emission in a broad spectral range of 495-597 nm. The complex with the Cu4I4L2 stoichiometry bearing a stair-step Cu4I4 core demonstrates temperature-dependent dual emission. The luminescence properties of all complexes were rationalized by DFT calculations.

2.
Dalton Trans ; 50(38): 13421-13429, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34477191

ABSTRACT

Two luminescent Cu4I4-cubane tetramers with N-methyl-10-(p-halogenophenyl)-5,10-dihydrophenarsazine ligands were synthesized and characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction analysis. The UV-Vis absorption and emission properties were studied and rationalized by DFT and time-dependent DFT calculations. The luminescence behavior was found to be rather different from that of recently reported tetranuclear copper iodide cubane clusters based on As,O-analogues - 10-(aryl)phenoxarsines. The crystalline powders of both complexes exhibit the temperature-dependent dual-band emission: the low-energy emission originates from the cluster-centered (3CC) triplet state, whereas the high-energy emission was attributed to the intraligand (3IL) triplet state.

3.
Inorg Chem ; 60(9): 6804-6812, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33886298

ABSTRACT

Synthesis and structural and photophysical characterization of platinum dihalogenide complexes formulated as [PtHal2L2], where Hal = Cl and I, with different 10-(aryl)phenoxarsine ligands such as 10-(p-chlorophenyl)phenoxarsine, 10-(p-tolyl)phenoxarsine, and 10-(phenyl)phenoxarsine are reported. The structures of complexes were determined by NMR spectroscopy, mass spectrometry, and X-ray analysis. Cis/trans isomerism of the complexes in solution was studied by NMR spectroscopy. In the solid state, under UV irradiation, platinum diiodide trans complexes exhibit an intense orange-red emission, which was attributed to a metal halide-centered triplet state. The UV/vis absorption and emission properties were studied and rationalized by density functional theory (DFT) and time-dependent DFT calculations.

4.
Dalton Trans ; 49(2): 482-491, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31833494

ABSTRACT

In this work, we present the synthesis, structural and photophysical characterization, and theoretical study of tetranuclear copper(i) cubane-type Cu4I4 clusters 6-10 with different 10-(aryl)phenoxarsine ligands - 10-(p-fluorophenyl)phenoxarsine (1), 10-(p-ethoxyphenyl)phenoxarsine (2), 10-(phenyl)phenoxarsine (3), 10-(m-fluorophenyl)phenoxarsine (4), and 10-(o-methoxyphenyl)phenoxarsine (5), respectively. The structures of 1-5 were confirmed by NMR spectroscopy, mass spectrometry, elemental analysis and for complexes 6, 7, and 10 by single-crystal X-ray diffraction analysis. The UV/Vis absorption and emission properties were studied and rationalized by DFT and time-dependent DFT calculations. In the solid state, under UV irradiation, all complexes exhibit an intense green emission, which was attributed to a cluster-centered triplet state.

SELECTION OF CITATIONS
SEARCH DETAIL
...