Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
2.
Kidney Int Rep ; 7(5): 1084-1092, 2022 May.
Article in English | MEDLINE | ID: mdl-35570989

ABSTRACT

Introduction: Proximal tubule sodium uptake is diminished following sodium glucose cotransporter 2 (SGLT2) inhibition. We previously showed that during SGLT2 inhibition, the kidneys adapt by increasing sodium uptake at distal tubular segments, thereby maintaining body sodium balance. Despite continuous glycosuria, we detected no increased urine volumes. We therefore assessed the adaptive renal responses to prevent excessive fluid loss. Methods: We conducted a mechanistic open-label study in people with type 2 diabetes mellitus with preserved kidney function, who received a standardized sodium intake (150 mmol/d) to evaluate the effects of dapagliflozin on renin-angiotensin-aldosterone system (RAAS) hormones, volume-related biomarkers, urinary albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR), at start of treatment (day 4), end of treatment (day 14), and follow-up (day 18). Results: A total of 14 people were enrolled. Plasma renin and angiotensin II and urinary aldosterone and angiotensinogen were acutely and persistently increased during treatment with dapagliflozin. Plasma copeptin level was numerically increased after 4 days (21%). Similarly, fractional urea excretion was significantly decreased at start of treatment (-17%). Free water clearance was significantly decreased after 4 days (-74%) and 14 days (-41%). All changes reversed after dapagliflozin discontinuation. Conclusion: Dapagliflozin-induced osmotic diuresis triggers kidney adaptive mechanisms to maintain volume and sodium balance in people with type 2 diabetes and preserved kidney function. ClinicalTrials.gov (identification: NCT03152084).

3.
J Diabetes Complications ; 36(3): 108127, 2022 03.
Article in English | MEDLINE | ID: mdl-35067449

ABSTRACT

AIMS: Glomerular hyperfiltration plays a key role in the pathophysiology of diabetic kidney disease (DKD). Mechanisms underlying this adverse hemodynamic profile are incompletely understood. We hypothesized that systemic vascular pathology, including endothelial dysfunction and arterial stiffness, relates to glomerular hyperfiltration indicated by filtration fraction (FF). METHODS: Baseline data of three trials of overweight adults with type 2 diabetes (TD2, n = 111) with relatively well preserved kidney function were analyzed. Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), and FF, were assessed with gold-standard clearance techniques. Systemic vascular resistance (SVR), an indicator of endothelial dysfunction, and pulse pressure (PP), a measure of arterial stiffness, were derived from continuous beat-to-beat monitoring. RESULTS: SVR related negatively to GFR (ß: -0.382, p < 0.001) and ERPF (ß: -0.475, p < 0.001), and positively to FF (ß:0.369, p < 0.001). Associations between SVR, ERPF and FF persisted after multivariable adjustments.. PP was negatively related to ERPF (ß: -0.252, p = 0.008), and positively to FF (ß: 0.257, p = 0.006), of which the latter remained significant in multivariable regression. CONCLUSION: Parameters of systemic vascular pathology, including endothelial dysfunction and arterial stiffness, relate to an adverse kidney hemodynamic profile characterized by glomerular hyperfiltration, which predisposes to the development of DKD.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Adult , Clinical Trials as Topic , Diabetes Mellitus, Type 2/drug therapy , Glomerular Filtration Rate/physiology , Hemodynamics/physiology , Humans , Kidney
4.
Diabetes Obes Metab ; 24(1): 115-124, 2022 01.
Article in English | MEDLINE | ID: mdl-34580975

ABSTRACT

AIM: To determine the effect of the dipeptidyl peptidase-4 inhibitor linagliptin on postprandial glomerular hyperfiltration compared with the sulphonylurea glimepiride in adults with type 2 diabetes (T2D). MATERIALS AND METHODS: In this predefined substudy within a randomized, double-blind, parallel-group, intervention trial, overweight people with T2D without renal impairment were treated with once-daily linagliptin 5 mg (N = 10) or glimepiride 1 mg (N = 13) as an add-on to metformin for 8 weeks. After a standardized liquid protein-rich meal, the glomerular filtration rate (GFR) and effective renal plasma flow were determined by inulin and para-aminohippuric acid clearance, respectively, based on timed urine sampling. Intrarenal haemodynamics were estimated using the Gomez equations. Glucoregulatory/vasoactive hormones, urinary pH and fractional excretions (FE) of sodium, potassium and urea were measured. RESULTS: Compared with glimepiride, linagliptin increased the postprandial filtration fraction (FF; mean difference 2.1%-point; P = .016) and estimated glomerular hydraulic pressure (mean difference 3.0 mmHg; P = .050), and tended to increase GFR (P = .08) and estimated efferent renal arteriolar resistance (RE ; P = .08) from baseline to week 8. No differences in FE were noted. Glimepiride reduced HbA1c more than linagliptin (mean difference -0.40%; P = .004), without between-group differences in time-averaged postprandial glucose levels. In the linagliptin group, change in FF correlated with change in mean arterial pressure (R = 0.807; P = .009) and time-averaged mean glucagon (R = 0.782; P = .008), but not with changes in glucose, insulin, intact glucagon-like peptide-1, renin or FENa . Change in glucagon was associated with change in RE (R = 0.830; P = .003). CONCLUSIONS: In contrast to our hypothesis, compared with glimepiride, linagliptin does not reduce postprandial hyperfiltration, yet appears to increase FF after meal ingestion by increasing blood pressure or RE .


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Adult , Blood Glucose , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Double-Blind Method , Glycated Hemoglobin , Hemodynamics , Humans , Hypoglycemic Agents/therapeutic use , Linagliptin/therapeutic use , Sulfonylurea Compounds , Treatment Outcome
5.
Sci Rep ; 11(1): 10624, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34012064

ABSTRACT

Glucagon-like peptide 1 receptor agonists have shown cardioprotective effects which have been suggested to be mediated through inhibition of oxidative stress. We investigated the effect of treatment with a glucagon-like peptide 1 receptor agonist (liraglutide) on oxidative stress measured as urinary nucleic acid oxidation in persons with type 2 diabetes. Post-hoc analysis of two independent, randomised, placebo-controlled and double-blinded clinical trials. In a cross-over study where persons with type 2 diabetes and microalbuminuria (LIRALBU, n = 32) received liraglutide (1.8 mg/day) or placebo for 12 weeks in random order, separated by 4 weeks of wash-out. In a parallel-grouped study where obese persons with type 2 diabetes (SAFEGUARD, n = 56) received liraglutide (1.8 mg/day), sitagliptin (100 mg/day) or placebo for 12 weeks. Endpoints were changes in the urinary markers of DNA oxidation (8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)) and RNA oxidation [8-oxo-7,8-dihydroguanosine (8-oxoGuo)]. In LIRALBU, we observed no significant differences between treatment periods in urinary excretion of 8-oxodG [0.028 (standard error (SE): 0.17] nmol/mmol creatinine, p = 0.87) or of 8-oxoGuo [0.12 (0.12) nmol/mmol creatinine, p = 0.31]. In SAFEGUARD, excretion of 8-oxodG was not changed in the liraglutide group [2.8 (- 8.51; 15.49) %, p = 0.62] but a significant decline was demonstrated in the placebo group [12.6 (- 21.3; 3.1) %, p = 0.02], resulting in a relative increase in the liraglutide group compared to placebo (0.16 nmol/mmol creatinine, SE 0.07, p = 0.02). Treatment with sitagliptin compared to placebo demonstrated no significant difference (0.07 (0.07) nmol/mmol creatinine, p = 0.34). Nor were any significant differences for urinary excretion of 8-oxoGuo liraglutide vs placebo [0.09 (SE: 0.07) nmol/mmol creatinine, p = 0.19] or sitagliptin vs placebo [0.07 (SE: 0.07) nmol/mmol creatinine, p = 0.35] observed. This post-hoc analysis could not demonstrate a beneficial effect of 12 weeks of treatment with liraglutide or sitagliptin on oxidatively generated modifications of nucleic acid in persons with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Liraglutide/pharmacology , Oxidative Stress , Sitagliptin Phosphate/pharmacology , 8-Hydroxy-2'-Deoxyguanosine/urine , Adult , Aged , Diabetes Mellitus, Type 2/urine , Female , Guanosine/analogs & derivatives , Guanosine/urine , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Oxidative Stress/drug effects
6.
Microcirculation ; 28(6): e12700, 2021 08.
Article in English | MEDLINE | ID: mdl-33864418

ABSTRACT

OBJECTIVE: Diabetic kidney disease is a microvascular complication of diabetes. Here, we assessed the association between skin microvascular function and renal hemodynamic function in a cohort of well-phenotyped adults with type 2 diabetes (T2D). METHODS: We included 81 overweight/obese adults (age: 62 ± 8 years; BMI: 32 ± 4 kg/m2 ) with well-controlled T2D and no renal impairment. Skin microvascular function was assessed by nailfold capillary density in rest and after arterial occlusion (ie, peak capillary density). Renal hemodynamic functions (ie, measured glomerular filtration rate [mGFR], effective renal blood flow [ERBF], filtration fraction [FF], and effective renal vascular resistance [ERVR]) were assessed by combined inulin and para-aminohippurate clearances and blood pressure measurements. RESULTS: Skin capillary density was 45 ± 10 capillaries/mm2 at baseline and 57 ± 11 capillaries/mm2 during post-occlusive peak; mGFR averaged 108 ± 20 ml/min. In multivariable regression analyses, positive associations between capillary density during post-occlusive peak and mGFR (ß = 0.224; p = 0.022) and ERBF (ß = 0.203; p = 0.020) and a positive trend for hyperemia and mGFR (ß = 0.391; p = 0.053) were observed, while a negative association for post-occlusive capillary density with ERVR (ß = -0.196; p = 0.027) was found. CONCLUSION: These findings indicate that microvascular dysfunction in overweight adults with T2D is associated with lower mGFR and ERPF and higher ERVR. We hypothesize that increased renal vascular resistance may contribute to glomerular dysfunction due to impaired renal perfusion.


Subject(s)
Diabetes Mellitus, Type 2 , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Glomerular Filtration Rate , Hemodynamics , Humans , Kidney , Middle Aged , Overweight
7.
Am J Physiol Renal Physiol ; 320(6): F1152-F1158, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33900855

ABSTRACT

The progression of kidney disease may differ between sexes in type 2 diabetes (T2D), with previous studies reporting a slower decline in women. Glomerular hyperfiltration is a key factor driving the kidney function decline. The current study aimed to investigate the differences in kidney hemodynamic function between men and women with T2D. A cross-sectional analysis of pooled data from three studies compared kidney hemodynamic function between men and postmenopausal women with T2D without overt nephropathy. The outcome measures were glomerular filtration rate (GFR; inulin clearance), effective renal plasma flow (ERPF; p-aminohippurate clearance), filtration fraction (GFR/ERPF), and renal vascular resistance (RVR; mean arterial pressure/renal blood flow). Glomerular hydraulic pressure (PGLO) as well as afferent and efferent vascular resistance were estimated by Gomez formulae. Sex differences were assessed with linear regression models adjusted for systolic blood pressure, glucose, use of renin-angiotensin system blockers, and body mass index. In total, 101 men [age: 63 (58-68) yr, body mass index: 31.5 ± 3.9 kg/m2, GFR: 111 ± 18 mL/min, HbA1c: 7.4 ± 0.7%] and 27 women [age: 66 (62-69) yr, body mass index: 30.9 ± 4.5 kg/m2, GFR: 97 ± 11 mL/min, HbA1c: 7.1 ± 0.5%] were included. GFR was higher in men versus women [11.0 mL/min (95% confidence interval: 3.6, 18.4)]. Although statistically nonsignificant, PGLO trended higher in men [1.9 mmHg (95% confidence interval: -0.1, 4.0)], whereas RVR [-0.012 mmHg/L/min (95% confidence interval: -0.022, -0.002)] and afferent vascular resistance were lower [-361 dyn/s/cm5 (95% confidence interval: -801, 78)]. In conclusion, in adults without overt nephropathy, GFR was higher in men compared with women. PGLO also trended to be higher in men. Both findings are possibly related to afferent vasodilation and suggest greater prevalence of hyperfiltration. This could contribute to accelerated GFR loss over time in men with T2D.NEW & NOTEWORTHY In adults with type 2 diabetes, men had higher markers of hyperfiltration, which could potentially explain the accelerated progression of diabetic kidney disease in men compared with women.


Subject(s)
Diabetes Mellitus, Type 2 , Hemodynamics , Kidney/physiology , Postmenopause , Aged , Biomarkers , Female , Humans , Male , Middle Aged
10.
Diabetes Care ; 44(2): 440-447, 2021 02.
Article in English | MEDLINE | ID: mdl-33318125

ABSTRACT

OBJECTIVE: Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk for heart failure hospitalization potentially by inducing sodium excretion, osmotic diuresis, and plasma volume contraction. Few studies have investigated this hypothesis, but none have assessed cumulative sodium excretion with SGLT2 inhibition during standardized sodium intake in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: The DAPASALT trial was a mechanistic, nonrandomized, open-label study in patients with type 2 diabetes with preserved kidney function on a controlled standardized sodium diet (150 mmol/day). It evaluated the effects of dapagliflozin on sodium excretion, 24-h blood pressure, and extracellular, intracellular, and plasma volumes at the start of treatment (ST) (days 2-4), end of treatment (ET) (days 12-14), and follow-up (FU) (days 15-18). RESULTS: Fourteen patients were included in the efficacy analysis. Mean (SD) baseline sodium excretion (150 [32] mmol/24-h) did not significantly change during treatment (change at ST: -7.0 mmol/24-h [95% CI -22.4, 8.4]; change at ET: 2.1 mmol/24-h [-28.8, 33.0]). Mean baseline 24-h systolic blood pressure was 128 (10) mmHg and significantly reduced at ST (-6.1 mmHg [-9.1, -3.1]; P < 0.001) and ET (-7.2 mmHg [-10.0, -4.3]; P < 0.001). Dapagliflozin did not significantly alter plasma volume or intracellular volume, while extracellular volume changed at ST (-0.7 L [-1.3, -0.1]; P = 0.02). As expected, 24-h urinary glucose excretion significantly increased during dapagliflozin treatment and reversed during FU. CONCLUSIONS: During standardized sodium intake, dapagliflozin reduced blood pressure without clear changes in urinary sodium excretion, suggesting that factors other than natriuresis and volume changes may contribute to the blood pressure-lowering effects.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium, Dietary , Sodium-Glucose Transporter 2 Inhibitors , Benzhydryl Compounds/therapeutic use , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Glucosides , Humans , Kidney , Natriuretic Agents , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
11.
Clin Sci (Lond) ; 134(23): 3107-3118, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33205810

ABSTRACT

Sodium-glucose transporter (SGLT)2 inhibitors increase plasma magnesium and plasma phosphate and may cause ketoacidosis, but the contribution of improved glycemic control to these observations as well as effects on other electrolytes and acid-base parameters remain unknown. Therefore, our objective was to compare the effects of SGLT2 inhibitors dapagliflozin and sulfonylurea gliclazide on plasma electrolytes, urinary electrolyte excretion, and acid-base balance in people with Type 2 diabetes (T2D). We assessed the effects of dapagliflozin and gliclazide treatment on plasma electrolytes and bicarbonate, 24-hour urinary pH and excretions of electrolytes, ammonium, citrate, and sulfate in 44 metformin-treated people with T2D and preserved kidney function. Compared with gliclazide, dapagliflozin increased plasma chloride by 1.4 mmol/l (95% CI 0.4-2.4), plasma magnesium by 0.03 mmol/l (95% CI 0.01-0.06), and plasma sulfate by 0.02 mmol/l (95% CI 0.01-0.04). Compared with baseline, dapagliflozin also significantly increased plasma phosphate, but the same trend was observed with gliclazide. From baseline to week 12, dapagliflozin increased the urinary excretion of citrate by 0.93 ± 1.72 mmol/day, acetoacetate by 48 µmol/day (IQR 17-138), and ß-hydroxybutyrate by 59 µmol/day (IQR 0-336), without disturbing acid-base balance. In conclusion, dapagliflozin increases plasma magnesium, chloride, and sulfate compared with gliclazide, while reaching similar glucose-lowering in people with T2D. Dapagliflozin also increases urinary ketone excretion without changing acid-base balance. Therefore, the increase in urinary citrate excretion by dapagliflozin may reflect an effect on cellular metabolism including the tricarboxylic acid cycle. This potentially contributes to kidney protection.


Subject(s)
Acid-Base Equilibrium/drug effects , Blood Glucose/metabolism , Electrolytes/metabolism , Kidney Tubules/pathology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2/metabolism , Sulfonylurea Compounds/therapeutic use , Ammonium Compounds/urine , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Bicarbonates/blood , Citrates/urine , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/urine , Electrolytes/blood , Female , Gliclazide/pharmacology , Gliclazide/therapeutic use , Glomerular Filtration Rate/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Humans , Hydrogen-Ion Concentration , Ketones/blood , Ketones/urine , Male , Middle Aged , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sulfonylurea Compounds/pharmacology
12.
Diabetes Care ; 43(11): 2889-2893, 2020 11.
Article in English | MEDLINE | ID: mdl-32900785

ABSTRACT

OBJECTIVE: To compare effects of the dipeptidyl peptidase 4 (DPP-4) inhibitor linagliptin with those of a sulfonylurea on renal physiology in metformin-treated patients with type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS: In this double-blind randomized trial, 46 overweight T2DM patients without renal impairment received once-daily linagliptin (5 mg) or glimepiride (1 mg) for 8 weeks. Fasting glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) were determined by inulin and para-aminohippuric acid clearances. Fractional excretions, urinary damage markers, and circulating DPP-4 substrates (among others, glucagon-like peptide 1 and stromal cell-derived factor-1α [SDF-1α]) were measured. RESULTS: HbA1c reductions were similar with linagliptin (-0.45 ± 0.09%) and glimepiride (-0.65 ± 0.10%) after 8 weeks (P = 0.101). Linagliptin versus glimepiride did not affect GFR, ERPF, estimated intrarenal hemodynamics, or damage markers. Only linagliptin increased fractional excretion (FE) of sodium (FENa) and potassium, without affecting FE of lithium. Linagliptin-induced change in FENa correlated with SDF-1α (R = 0.660) but not with other DPP-4 substrates. CONCLUSIONS: Linagliptin does not affect fasting renal hemodynamics compared with glimepiride in T2DM patients. DPP-4 inhibition promotes modest natriuresis, possibly mediated by SDF-1α, likely distal to the macula densa.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Kidney/drug effects , Linagliptin/adverse effects , Metformin/adverse effects , Overweight/complications , Sulfonylurea Compounds/adverse effects , Adult , Aged , Chemokine CXCL12/blood , Diabetes Mellitus, Type 2/blood , Dipeptidyl Peptidase 4/blood , Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Double-Blind Method , Drug Therapy, Combination/adverse effects , Female , Glomerular Filtration Rate , Glycated Hemoglobin/analysis , Humans , Linagliptin/administration & dosage , Male , Middle Aged , Natriuresis/drug effects , Sulfonylurea Compounds/administration & dosage , Treatment Outcome
13.
Diabetes Obes Metab ; 22(10): 1847-1856, 2020 10.
Article in English | MEDLINE | ID: mdl-32476255

ABSTRACT

AIM: To determine the glucose-independent effect of the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin versus the sulphonylurea glimepiride on systemic haemodynamics in the fasting and postprandial state in patients with type 2 diabetes (T2D). MATERIALS AND METHODS: In this prespecified secondary analysis of a phase IV, double-blind trial, 46 metformin-treated, overweight patients with T2D were included and randomly assigned (1:1) to once-daily linagliptin (5 mg) or glimepiride (1 mg) for 8 weeks. In a sub-study involving 26 patients, systemic haemodynamics were also assessed following a standardized liquid meal (Nutridrink Yoghurt style). Systemic haemodynamics (oscillometric device and finger photoplethysmography), arterial stiffness (applanation tonometry) and cardiac sympathovagal balance (heart rate variability [HRV]) were measured in the fasting state and repetitively following the meal. Ewing tests were performed in the fasting state. RESULTS: From baseline to week 8, linagliptin compared with glimepiride did not affect systemic haemodynamics, arterial stiffness or HRV in the fasting state. Linagliptin increased parasympathetic nervous activity, as measured by the Valsalva manoeuvre (P = .021) and deep breathing test (P = .027) compared with glimepiride. Postprandially, systolic blood pressure (SBP) dropped an average of 7.6 ± 1.6 mmHg. Linagliptin reduced this decrease to 0.7 ± 2.3 mmHg, which was significant to glimepiride (P = .010). CONCLUSIONS: When compared with glimepiride, linagliptin does not affect fasting blood pressure. However, linagliptin blunted the postprandial drop in SBP, which could benefit patients with postprandial hypotension.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Blood Glucose , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Double-Blind Method , Glycated Hemoglobin , Hemodynamics , Humans , Hypoglycemic Agents/therapeutic use , Linagliptin/therapeutic use , Overweight/complications , Sulfonylurea Compounds , Treatment Outcome
14.
J Hypertens ; 38(9): 1811-1819, 2020 09.
Article in English | MEDLINE | ID: mdl-32516291

ABSTRACT

OBJECTIVES: There is a bidirectional relationship between cardiovascular and renal disease. The drug-class of SGLT2 inhibitors improves outcomes at both ends of this so called cardiorenal axis. We assessed the effects of SGLT2 inhibition and sulfonylurea treatment on systemic hemodynamic function and investigated whether SGLT2 inhibitor-induced changes in systemic hemodynamics correlate with changes in renal hemodynamics. METHODS: Forty-four people with type 2 diabetes were randomized to 12 weeks of dapagliflozin 10 mg/day or gliclazide 30 mg/day treatment. Systemic hemodynamic function, autonomic nervous system activity, and vascular stiffness were measured noninvasively, whereas renal hemodynamics, glomerular filtration rate (GFR) and effective renal plasma flow, were assessed with gold-standard urinary clearances of inulin or iohexol and para-aminohippuric acid, respectively. Correlation analyses were performed to assess relationships between dapagliflozin-induced changes in cardiovascular and renal variables. RESULTS: Dapagliflozin reduced stroke volume by 4%, cardiac output by 5%, vascular stiffness by 11%, and mean arterial pressure by 5% from baseline, without increasing heart rate or sympathetic activity, while simultaneously lowering glomerular filtration rate by 8%. Despite similar improvements in glycemic control by dapagliflozin and gliclazide (-0.5 ±â€Š0.5 versus-0.7 ±â€Š0.5%; P = 0.12), gliclazide did not affect any of these measurements. There was no clear association between the dapagliflozin-induced changes in cardiovascular and renal physiology. CONCLUSION: Dapagliflozin seemingly influences systemic and renal hemodynamics independently and beyond glucose lowering in people with type 2 diabetes.This clinical trial was registered at https://clinicalTrials.gov (ID: NCT02682563).


Subject(s)
Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Gliclazide/therapeutic use , Glucosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Vascular Stiffness/drug effects , Benzhydryl Compounds/pharmacology , Gliclazide/pharmacology , Glomerular Filtration Rate/drug effects , Glucosides/pharmacology , Humans , Hypoglycemic Agents/pharmacology
15.
MAGMA ; 33(1): 73-80, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31471702

ABSTRACT

OBJECTIVES: Increased renal sinus fat (RSF) is associated with hypertension and chronic kidney disease, but underlying mechanisms are incompletely understood. We evaluated relations between RSF and gold-standard measures of renal hemodynamics in type 2 diabetes (T2D) patients. METHODS: Fifty-one T2D patients [age 63 ± 7 years; BMI 31 (28-34) kg/m2; GFR 83 ± 16 mL/min/1.73 m2] underwent MRI-scanning to quantify RSF volume, and subcutaneous and visceral adipose tissue compartments (SAT and VAT, respectively). GFR and effective renal plasma flow (ERPF) were determined by inulin and PAH clearances, respectively. Effective renal vascular resistance (ERVR) was calculated. RESULTS: RSF correlated negatively with GFR (r = - 0.38; p = 0.006) and ERPF (r = - 0.38; p = 0.006) and positively with mean arterial pressure (MAP) (r = 0.29; p = 0.039) and ERVR (r = 0.45, p = 0.001), which persisted after adjustment for VAT, MAP, sex, and BMI. After correction for age, ERVR remained significantly related to RSF. CONCLUSIONS: In T2D patients, higher RSF volume was negatively associated to GFR. In addition, RSF volume was positively associated with increased renal vascular resistance, which may mediate hypertension and CKD development. Further research is needed to investigate how RSF may alter the (afferent) vascular resistance of the renal vasculature.


Subject(s)
Diabetes Mellitus, Type 2/diagnostic imaging , Hemodynamics , Kidney Failure, Chronic/diagnostic imaging , Kidney/blood supply , Kidney/diagnostic imaging , Adult , Aged , Body Mass Index , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Female , Humans , Hypertension/complications , Inulin/metabolism , Kidney/physiopathology , Kidney Failure, Chronic/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged
17.
Adv Ther ; 37(2): 973, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31873867

ABSTRACT

There are some corrections in the original article, Page 11, "/LYXUMIA" word has to be removed from the section RATIONALE FOR COMBINATION THERAPY COMPRISING GLP-1 RAs AND BASAL INSULIN.

18.
Kidney Int ; 97(1): 202-212, 2020 01.
Article in English | MEDLINE | ID: mdl-31791665

ABSTRACT

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve hard renal outcomes in type 2 diabetes. This is possibly explained by the fact that SGLT2i normalize the measured glomerular filtration rate (mGFR) by increasing renal vascular resistance, as was shown in young people with type 1 diabetes and glomerular hyperfiltration. Therefore, we compared the renal hemodynamic effects of dapagliflozin with gliclazide in type 2 diabetes. The mGFR and effective renal plasma flow were assessed using inulin and para-aminohippurate clearances in the fasted state, during clamped euglycemia (5 mmol/L) and during clamped hyperglycemia (15 mmol/L). Filtration fraction and renal vascular resistance were calculated. Additionally, factors known to modulate renal hemodynamics were measured. In 44 people with type 2 diabetes on metformin monotherapy (Hemoglobin A1c 7.4%, mGFR 113 mL/min), dapagliflozin versus gliclazide reduced mGFR by 5, 10, and 12 mL/min in the consecutive phases while both agents similarly improved Hemoglobin A1c (-0.48% vs -0.65%). Dapagliflozin also reduced filtration fraction without increasing renal vascular resistance, and increased urinary adenosine and prostaglandin concentrations. Gliclazide did not consistently alter renal hemodynamic parameters. Thus, beyond glucose control, SGLT2i reduce mGFR and filtration fraction in type 2 diabetes. The fact that renal vascular resistance was not increased by dapagliflozin suggests that this is due to post-glomerular vasodilation rather than pre-glomerular vasoconstriction.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/prevention & control , Kidney/blood supply , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vasodilation/drug effects , Aged , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetic Nephropathies/blood , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Double-Blind Method , Female , Gliclazide/pharmacology , Gliclazide/therapeutic use , Glomerular Filtration Rate/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Glycated Hemoglobin/analysis , Humans , Kidney/drug effects , Kidney/pathology , Male , Metformin/pharmacology , Metformin/therapeutic use , Middle Aged , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Treatment Outcome , Vasoconstriction/drug effects
19.
Diabetes Care ; 43(1): 228-234, 2020 01.
Article in English | MEDLINE | ID: mdl-31662305

ABSTRACT

OBJECTIVE: Impaired insulin sensitivity is associated with hyperfiltration (i.e., elevated glomerular filtration rate [GFR]) in adolescents with type 2 diabetes (T2D) and adults with prediabetes. Yet, these relationships are based on studies that relied on estimated GFR (eGFR), estimates of insulin sensitivity, or both. We aimed to verify the relationship between insulin sensitivity and renal hemodynamic function by gold standard methods in adults with T2D. RESEARCH DESIGN AND METHODS: Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp (M value) (glucose infusion rate in mg/kglean/min) and renal hemodynamic function by urinary inulin (GFR) and para-aminohippuric acid (effective renal plasma flow [ERPF]) clearances in participants with T2D without overt kidney disease. Filtration fraction (FF) (GFR/ERPF) was calculated. Relationships between insulin sensitivity and renal hemodynamic parameters were examined by multivariable linear regression. Renal hemodynamic parameters were examined across tertiles of M values. RESULTS: We tested 44 adults with T2D, of whom 77% were male, with mean ± SD age 63 ± 7 years, BMI 31.2 ± 4.0 kg/m2, and HbA1c 7.4 ± 0.6%. Average GFR was 110 ± 26 mL/min, with an FF of 22.1 ± 2.8% and median 24-h urinary albumin excretion of 11.3 mg (interquartile range 5.8-17.0). Average M value was 5.6 ± 2.9 mg/kglean/min. Insulin sensitivity inversely correlated with GFR (r = -0.44, P < 0.01) and FF (r = -0.40, P < 0.01), and these associations remained significant after multivariable adjustments for age, sex, renin-angiotensin system inhibitor use, and HbA1c. In addition, GFR, FF, and urinary albumin excretion were highest in the participants in the lowest M value tertile. CONCLUSIONS: For the first time, we demonstrate that impaired insulin sensitivity is associated with intrarenal hemodynamic dysfunction by gold standard techniques in adults with T2D treated with metformin monotherapy.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hemodynamics , Insulin Resistance/physiology , Kidney/drug effects , Kidney/physiopathology , Metformin/therapeutic use , Adult , Aged , Benzhydryl Compounds/therapeutic use , Cross-Sectional Studies , Cytoprotection/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Female , Glomerular Filtration Rate/drug effects , Glucose Clamp Technique , Glucosides/therapeutic use , Hemodynamics/drug effects , Hemodynamics/physiology , Humans , Kidney/blood supply , Kidney/metabolism , Male , Metformin/pharmacology , Middle Aged , Netherlands , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology
20.
Adv Ther ; 36(12): 3321-3339, 2019 12.
Article in English | MEDLINE | ID: mdl-31646466

ABSTRACT

Estimates suggest that there are currently 122.8 million adults 65-99 years of age living with diabetes, of whom 90-95% are diagnosed with type 2 diabetes (T2D). Over the past two decades, a greater understanding of the complex and multifactorial pathogenesis of T2D has resulted in the development and introduction of new-generation classes of glucose-lowering therapies, which are now extensively endorsed by prevailing guidelines and are increasingly being used worldwide. These newer agents may further assist in the effective pharmacological management of T2D through the provision of patient-centered care that acknowledges multimorbidity and is respectful of and responsive to individual patient preferences and barriers. Given these considerations, the therapeutic approach in older patients with T2D is complex, particularly in those who have functional dependence, frailty, dementia, or who are at end-of-life. It is currently too early to draw conclusions on the long-term use of newer glucose-lowering agents in this population, as their efficacy and safety in older adults remains largely unknown. In this review, we will discuss considerations for the use of glucose-lowering treatments in older adults, with particular focus on the use of basal insulin and glucagon-like peptide-1 receptor agonists, and the rationale for the use of combination therapy comprising these agents. Finally, we will review clinical data from studies of the fixed-ratio combination of insulin glargine and lixisenatide in older patients with T2D. FUNDING: Sanofi US, Inc.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Insulin Glargine/therapeutic use , Peptides/therapeutic use , Activities of Daily Living , Aged , Aged, 80 and over , Aging , Frailty/epidemiology , Humans , Hypoglycemic Agents/adverse effects , Insulin/therapeutic use , Insulin Glargine/administration & dosage , Insulin Glargine/adverse effects , Peptides/administration & dosage , Peptides/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...