Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35253016

ABSTRACT

Neurosurgical operations are long and intensive medical procedures, during which the surgeon must constantly have an unobscured view of the brain in order to be able to properly operate, and thus must use a variety of tools to clear obstructions (like blood and fluid) from the operating area. Currently, cotton balls are the most versatile and effective option to accomplish this as they absorb fluids, are soft enough to safely manipulate the brain, act as a barrier between other tools and the brain, and function as a spacer to keep anatomies of the brain open and visible during the operation. While cotton balls allow neurosurgeons to effectively improve visibility of the operating area, they may also be accidentally left in the brain upon completion of the surgery. This can lead to a wide range of post-operative risks including dangerous immune responses, additional medical care or surgical operations, and even death. This project seeks to develop a unique medical device that utilizes ultrasound technology in order to minimize cotton retention after neurosurgical procedures in order to reduce undesired post-operative risks, and maximize visibility.

2.
Biomaterials ; 185: 97-105, 2018 12.
Article in English | MEDLINE | ID: mdl-30236840

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory gastrointestinal disorder that affects more than 1 million individuals in the USA. Local therapy with enema formulations, such as micronized budesonide (Entocort®), is a common strategy for treating patients with distally active IBD. However, we hypothesize that micronized particulates are too large to effectively penetrate colorectal mucus, limiting the extent of drug delivery to affected tissues prior to clearance. Here, we describe the development of a budesonide nanosuspension (NS) with the appropriate surface coating and size to enhance penetration of colorectal mucus and ulcerated colorectal tissues. We demonstrate that model fluorescent polystyrene (PS) particles ∼200 nm in size with a muco-inert Pluronic F127 coating provide enhanced mucosal distribution and tissue penetration in mice with trinitrobenzenesulfonic acid (TNBS)-induced IBD compared to model 2 µm PS particles coated with polyvinylpyrollidone (PVP), the stabilizer used in the clinical micronized budesonide formulation. We then used a wet-milling process to develop a budesonide NS formulation with a muco-inert Pluronic F127 coating (particle size ∼230 nm), as well as a budesonide microsuspension (MS) stabilized with PVP (particle size ∼2 µm). Using an acute TNBS mouse model of IBD, we show that daily budesonide NS enema treatment resulted in a significant reduction in the macroscopic (decreased colon weight) and microscopic (histology score) symptoms of IBD compared to untreated controls or mice treated daily with the budesonide MS enema. Further, we show that the budesonide NS enema treated mice had a significantly reduced number of inflammatory macrophages and IL-ß producing CD11b + cells in colon tissue compared to untreated controls or mice treated with the budesonide MS enema. We conclude that the nano-size and muco-inert coating allowed for enhanced local delivery of budesonide, and thus, a more significant impact on local colorectal tissue inflammation.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Budesonide/administration & dosage , Budesonide/pharmacokinetics , Drug Delivery Systems , Inflammatory Bowel Diseases/drug therapy , Nanoparticles/metabolism , Animals , Colon/metabolism , Drug Compounding , Enema , Inflammatory Bowel Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mucus/metabolism , Poloxamer/metabolism , Polystyrenes/metabolism , Suspensions , Trinitrobenzenesulfonic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...