Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836601

ABSTRACT

This study explores task-specific ionic liquids (TSILs) in smart floor systems, highlighting their strong electrical rectification abilities and previously established wood preservative properties. Two types of TSILs, featuring a "sweet" anion and a terpene-based cation, were used to treat selected wood samples, allowing for a comparison of their physical and electrical performance with untreated and commercially treated counterparts. Drop shape analysis and scanning electron microscopy were employed to evaluate the surface treatment before and after coating. Near-IR was used to confirm the presence of a surface modifier, and thermogravimetric analysis (TGA) was utilized to assess the thermal features of the treated samples. The different surface treatments resulted in varied triboelectric nanogenerator (TENG) parameters, with the molecular structure and size of the side chains being the key determining factors. The best results were achieved with TSILs, with the instantaneous voltage increasing by approximately five times and the highest voltage reaching 300 V under enhanced loading. This work provides fresh insights into the potential application spectrum of TSILs and opens up new avenues for directly utilizing tested ionic compounds in construction systems.

2.
Materials (Basel) ; 16(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37629878

ABSTRACT

The creep of concrete is one of the main problems threatening concrete structural development and the stability and safety of structures. However, the nonlinear theory is the key to solving the problem of taking into account the physical and mechanical properties of concrete creep in shell structures. To create such a theory, the original shell is replaced by a continuous equivalent elastic shell. To determine the stress-strain state of the structure, the equations of nonlinear creep and crack growth are derived, and a deformation model of the section is created. The behavior of the structure at all stages of the life cycle is investigated by solving the solving systems of differential equations of equilibrium, motion, and perturbation of the equivalent shell. The values of the ratios of dependence of long-term and short-term critical loads on deformations, forces, cracks, etc., are given. The accuracy of the solution of the developed nonlinear theory is compared with the linear theory of concrete creep as well as experimental data. The results show that, according to the linear theory, for the values for the short term and long term, up to 56% and up to 39% of critical loads are overestimated, respectively. The creep process in practical engineering can be effectively controlled by the results of the proposed theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...