Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 109: 142-152, 2020 06.
Article in English | MEDLINE | ID: mdl-32294552

ABSTRACT

X-rays are frequently used for characterizing both tooth tissues and dental materials. Whereas radiographs and tomography utilize absorption contrast for retrieving details, chemical mapping is usually achieved by energy dispersive X-ray (EDX) analysis that is stimulated under vacuum in electron microscopes. However, the relatively dense mineralized composition of teeth, and the frequent inclusion of a large range of elements in filling materials raise the possibility that other X-ray based techniques such as X-ray fluorescence (XRF) spectroscopy may strongly contribute to investigations of a large variety of dental structures. By exploiting the fluorescence excited by micron sized X-rays (µXRF) it is possible to map minute quantities of a large range of elements (from aluminum to uranium), where spectra containing signals from multiple different elements can be resolved non-destructively and concomitantly. The high penetration depth of X-rays makes XRF highly effective at detecting variable compositions with information emerging from tooth tissues situated well beneath the sample surface. The method supports minimal sample preparation and, different from electron microscopy, it facilitates investigation of hydrated dental materials. Direct comparison of µXRF and confocal µXRF (CµXRF) with SEM-EDX reveals micro zones of chemical heterogeneity in the complex 3D architecture of root canal fillings. These methods reproducibly clarify the mutual arrangement of biomaterials in both fresh fillings as well as in repeatedly treated old teeth of unknown history. The results showcase the complementarity of X-ray and electron based elemental mapping for dental materials research. STATEMENT OF SIGNIFICANCE: Chemical characterization of mineralized tissues such as tooth dentine is often performed using energy dispersive X-ray spectroscopy (EDS/EDX) analysis by scanning electron microscopy (SEM). The widespread use of electron microscopes and simplified detector designs have made this form of chemical and structural analysis extremely popular. However, excitation by electrons is limited to the upper microns of the tissue, and these may not well represent the chemical composition of the bulk. Especially when heavier elements are of interest and when dental filling materials exhibit diffusion into the tooth, little is known about the spatial distribution. Here we show how complementary X-ray fluorescence data originating by electron and X-ray excitation can help visualize the distribution and impregnation of heavy elements through teeth, e.g. for root canal treatment.


Subject(s)
Dentin/chemistry , Root Canal Filling Materials/chemistry , Tooth/chemistry , Humans , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...