Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 12(12): 1139, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880223

ABSTRACT

Transcriptional and cellular-stress surveillance deficits are hallmarks of Huntington's disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington's patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.


Subject(s)
Huntington Disease , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Disease Progression , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Mice , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
2.
Antioxidants (Basel) ; 10(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34439532

ABSTRACT

Primary cilia (PC) are microtubule-based protrusions of the cell membrane transducing molecular signals during brain development. Here, we report that PC are required for maintenance of Substantia nigra (SN) dopaminergic (DA) neurons highly vulnerable in Parkinson's disease (PD). Targeted blockage of ciliogenesis in differentiated DA neurons impaired striato-nigral integrity in adult mice. The relative number of SN DA neurons displaying a typical auto-inhibition of spontaneous activity in response to dopamine was elevated under control metabolic conditions, but not under metabolic stress. Strikingly, in the absence of PC, the remaining SN DA neurons were less vulnerable to the PD neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP). Our data indicate conserved PC-dependent neuroadaptive responses to DA lesions in the striatum. Moreover, PC control the integrity and dopamine response of a subtype of SN DA neurons. These results reinforce the critical role of PC as sensors of metabolic stress in PD and other disorders of the dopamine system.

3.
Front Cell Neurosci ; 13: 565, 2019.
Article in English | MEDLINE | ID: mdl-31920562

ABSTRACT

Multiple pathomechanisms triggered by mutant Huntingtin (mHTT) underlie progressive degeneration of dopaminoceptive striatal neurons in Huntington's disease (HD). The primary cilium is a membrane compartment that functions as a hub for various pathways that are dysregulated in HD, for example, dopamine (DA) receptor transmission and the mechanistic target of rapamycin (mTOR) pathway. The roles of primary cilia (PC) for the maintenance of striatal neurons and in HD progression remain unknown. Here, we investigated PC defects in vulnerable striatal neurons in a progressive model of HD, the mHTT-expressing knock-in zQ175 mice. We found that PC length is affected in striatal but not in cortical neurons, in association with the accumulation of mHTT. To explore the role of PC, we generated conditional mutant mice lacking IFT88, a component of the anterograde intraflagellar transport-B complex lacking PC in dopaminoceptive neurons. This mutation preserved the expression of the dopamine 1 receptor (D1R), and the survival of striatal neurons, but resulted in a mild increase of DA metabolites in the striatum, suggesting an imbalance of ciliary DA receptor transmission. Conditional loss of PC in zQ175 mice did not trigger astrogliosis, however, mTOR signaling was more active and resulted in a more pronounced accumulation of nuclear inclusions containing mHTT. Further studies will be required of aged mice to determine the role of aberrant ciliary function in more advanced stages of HD.

4.
Dis Model Mech ; 10(5): 633-643, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28360124

ABSTRACT

Genetic mutations underlying neurodegenerative disorders impair ribosomal DNA (rDNA) transcription suggesting that nucleolar dysfunction could be a novel pathomechanism in polyglutamine diseases and in certain forms of amyotrophic lateral sclerosis/frontotemporal dementia. Here, we investigated nucleolar activity in pre-symptomatic digenic models of Parkinson's disease (PD) that model the multifactorial aetiology of this disease. To this end, we analysed a novel mouse model mildly overexpressing mutant human α-synuclein (hA53T-SNCA) in a PTEN-induced kinase 1 (PINK1/PARK6) knockout background and mutant mice lacking both DJ-1 (also known as PARK7) and PINK1. We showed that overexpressed hA53T-SNCA localizes to the nucleolus. Moreover, these mutants show a progressive reduction of rDNA transcription linked to a reduced mouse lifespan. By contrast, rDNA transcription is preserved in DJ-1/PINK1 double knockout (DKO) mice. mRNA levels of the nucleolar transcription initiation factor 1A (TIF-IA, also known as RRN3) decrease in the substantia nigra of individuals with PD. Because loss of TIF-IA, as a tool to mimic nucleolar stress, increases oxidative stress and because DJ-1 and PINK1 mutations result in higher vulnerability to oxidative stress, we further explored the synergism between these PD-associated genes and impaired nucleolar function. By the conditional ablation of TIF-IA, we blocked ribosomal RNA (rRNA) synthesis in adult dopaminergic neurons in a DJ-1/PINK1 DKO background. However, the early phenotype of these triple knockout mice was similar to those mice exclusively lacking TIF-IA. These data sustain a model in which loss of DJ-1 and PINK1 does not impair nucleolar activity in a pre-symptomatic stage. This is the first study to analyse nucleolar function in digenic PD models. We can conclude that, at least in these models, the nucleolus is not as severely disrupted as previously shown in DA neurons from PD patients and neurotoxin-based PD mouse models. The results also show that the early increase in rDNA transcription and nucleolar integrity may represent specific homeostatic responses in these digenic pre-symptomatic PD models.


Subject(s)
Cell Nucleolus/physiology , Disease Models, Animal , Mutation , Parkinson Disease/genetics , Animals , DNA, Ribosomal/genetics , Mice , Mice, Knockout , Parkinson Disease/pathology , Protein Deglycase DJ-1/genetics , Protein Kinases/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...