Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 35(6): 1434-44, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25908763

ABSTRACT

OBJECTIVE: Neointima formation after vascular injury remains a significant problem in clinical cardiology, and current preventive strategies are suboptimal. Phosphatidylinositol 3'-kinase is a central downstream mediator of growth factor signaling, but the role of phosphatidylinositol 3'-kinase isoforms in vascular remodeling remains elusive. We sought to systematically characterize the precise role of catalytic class IA phosphatidylinositol 3'-kinase isoforms (p110α, p110ß, p110δ), which signal downstream of receptor tyrosine kinases, for vascular remodeling in vivo. APPROACH AND RESULTS: Western blot analyses revealed that all 3 isoforms are abundantly expressed in smooth muscle cells. To analyze their significance for receptor tyrosine kinases-dependent cellular responses, we used targeted gene knockdown and isoform-specific small molecule inhibitors of p110α (PIK-75), p110ß (TGX-221), and p110δ (IC-87114), respectively. We identified p110α to be crucial for receptor tyrosine kinases signaling, thus affecting proliferation, migration, and survival of rat, murine, and human smooth muscle cells, whereas p110ß and p110δ activities were dispensable. Surprisingly, p110δ exerted noncatalytic functions in smooth muscle cell proliferation, but had no effect on migration. Based on these results, we generated a mouse model of smooth muscle cell-specific p110α deficiency (sm-p110α(-/-)). Targeted deletion of p110α in sm-p110α(-/-) mice blunted growth factor-induced cellular responses and abolished neointima formation after balloon injury of the carotid artery in mice. In contrast, p110δ deficiency did not affect vascular remodeling in vivo. CONCLUSIONS: Receptor tyrosine kinases-induced phosphatidylinositol 3'-kinase signaling via the p110α isoform plays a central role for vascular remodeling in vivo. Thus, p110α represents a selective target for the prevention of neointima formation after vascular injury, whereas p110ß and p110δ expression and activity do not play a significant role.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Vascular Remodeling/physiology , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Class Ia Phosphatidylinositol 3-Kinase/pharmacology , Humans , Mice , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/enzymology , Neointima/prevention & control , Protein Isoforms , Rats , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction
2.
J Am Coll Cardiol ; 57(25): 2527-38, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21679854

ABSTRACT

OBJECTIVES: We tested the hypothesis whether selective blunting of platelet-derived growth factor (PDGF)-dependent vascular smooth muscle cell (VSMC) proliferation and migration is sufficient to prevent neointima formation after vascular injury. BACKGROUND: To prevent neointima formation and stent thrombosis after coronary interventions, it is essential to inhibit VSMC proliferation and migration without harming endothelial cell function. The role of PDGF-a potent mitogen and chemoattractant for VSMC that does not affect endothelial cells-for neointima formation remains controversial. METHODS: To decipher the signaling pathways that control PDGF beta receptor (ßPDGFR)-driven VSMC proliferation and migration, we characterized 2 panels of chimeric CSF1R/ßPDGFR mutants in which the binding sites for ßPDGFR-associated signaling molecules (Src, phosphatidylinositol 3-kinase [PI3K], GTPase activating protein of ras, SHP-2, phospholipase Cγ 1 [PLCγ]) were individually mutated. Based on in vitro results, the importance of PDGF-initiated signals for neointima formation was investigated in genetically modified mice. RESULTS: Our results indicate that the chemotactic response to PDGF requires the activation of Src, PI3K, and PLCγ, whereas PDGF-dependent cell cycle progression is exclusively mediated by PI3K and PLCγ. These 2 signaling molecules contribute to signal relay of the ßPDGFR by differentially regulating cyclin D1 and p27(kip1). Blunting of ßPDGFR-induced PI3K and PLCγ signaling by a combination mutant (F3) completely abolished the mitogenic and chemotactic response to PDGF. Disruption of PDGF-dependent PI3K and PLCγ signaling in mice expressing the F3 receptor led to a profound reduction of neointima formation after balloon injury. CONCLUSIONS: Signaling by the activated ßPDGFR, particularly through PI3K and PLCγ, is crucial for neointima formation after vascular injury. Disruption of these specific signaling pathways is sufficient to attenuate pathogenic processes such as vascular remodeling in vivo.


Subject(s)
Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Neointima/prevention & control , Phosphatidylinositol 3-Kinase/metabolism , Phospholipase C gamma/metabolism , Animals , Cell Movement , Cell Proliferation , Mice , Platelet-Derived Growth Factor/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...