Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
2.
J Assoc Res Otolaryngol ; 23(3): 435-453, 2022 06.
Article in English | MEDLINE | ID: mdl-35378621

ABSTRACT

Vestibular evoked myogenic potentials (VEMPs) are routinely used to test otolith function, but which specific vestibular afferent neurons and central circuits are activated by auditory frequency VEMP stimuli remains unclear. To examine this question, we analyzed the sensitivity of individual vestibular afferents in adult Sprague-Dawley rats to tone bursts delivered at 9 frequencies (125-4000 Hz) and 3 intensity levels (60, 70, 80 dB SL re: acoustic brainstem response (ABR) threshold). Afferent neuron tone sensitivity was quantified by the cumulative probability of evoking a spike (CPE). Based on a threshold CPE of 0.1, acoustic stimuli in the present study evoked responses in 78.2 % (390/499) of otolith afferent neurons vs. 48.4 % (431/891) of canal afferent neurons. Organ-specific vestibular inputs to the central nervous system in response to tone bursts differ based on intensity and frequency content of the stimulus. At frequencies below 500 Hz, tone bursts primarily activated both otolith afferents, even at the highest intensity tested (80 dB SL re ABR threshold). At 1500 Hz, however, tone bursts activated the canal and otolith afferents at the moderate and high intensities tested (70, 80 dB SL), but activated only otolith afferents at the low intensity tested (60 dB SL). Within an end organ, diversity of sensitivity between individual afferent neurons correlated with spontaneous discharge rate and regularity. Examination of inner ear fluid mechanics in silico suggests that the frequency response and preferential activation of the otolith organs likely arise from inner ear fluid motion trapped near the oval and round windows. These results provide insight into understanding the mechanisms of sound activation of the vestibular system and developing novel discriminative VEMP testing protocols and interpretative guidelines in humans.


Subject(s)
Otolithic Membrane , Vestibular Evoked Myogenic Potentials , Acoustic Stimulation/methods , Acoustics , Animals , Otolithic Membrane/physiology , Rats , Rats, Sprague-Dawley , Vestibular Evoked Myogenic Potentials/physiology
3.
Front Neurosci ; 15: 741571, 2021.
Article in English | MEDLINE | ID: mdl-34720863

ABSTRACT

Vestibular evoked myogenic potentials (VEMP) have been used to assess otolith function in clinics worldwide. However, there are accumulating evidence suggesting that the clinically used sound stimuli activate not only the otolith afferents, but also the canal afferents, indicating canal contributions to the VEMPs. To better understand the neural mechanisms underlying the VEMPs and develop discriminative VEMP protocols, we further examined sound-evoked responses of the vestibular nucleus neurons and the abducens neurons, which have the interneurons and motoneurons of the vestibulo-ocular reflex (VOR) pathways. Air-conducted clicks (50-80 dB SL re ABR threshold, 0.1 ms duration) or tone bursts (60-80 dB SL, 125-4,000 Hz, 8 ms plateau, 1 ms rise/fall) were delivered to the ears of Sprague-Dawley or Long-Evans rats. Among 425 vestibular nucleus neurons recorded in anesthetized rats and 18 abducens neurons recorded in awake rats, sound activated 35.9% of the vestibular neurons that increased discharge rates for ipsilateral head rotation (Type I neuron), 15.7% of the vestibular neurons that increased discharge rates for contralateral head rotation (Type II neuron), 57.2% of the vestibular neurons that did not change discharge rates during head rotation (non-canal neuron), and 38.9% of the abducens neurons. Sound sensitive vestibular nucleus neurons and abducens neurons exhibited characteristic tuning curves that reflected convergence of canal and otolith inputs in the VOR pathways. Tone bursts also evoked well-defined eye movements that increased with tone intensity and duration and exhibited peak frequency of ∼1,500 Hz. For the left eye, tone bursts evoked upward/rightward eye movements for ipsilateral stimulation, and downward/leftward eye movements for contralateral stimulation. These results demonstrate that sound stimulation results in activation of the canal and otolith VOR pathways that can be measured by eye tracking devices to develop discriminative tests of vestibular function in animal models and in humans.

4.
Membranes (Basel) ; 11(2)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572590

ABSTRACT

Anion exchange membrane fuel cells (AEMFC) are potentially very low-cost replacements for proton exchange membrane fuel cells. However, AEMFCs suffer from one very serious drawback: significant performance loss when CO2 is present in the reacting oxidant gas (e.g., air) due to carbonation. Although the chemical mechanisms for how carbonation leads to voltage loss in operating AEMFCs are known, the way those mechanisms are affected by the properties of the anion exchange membrane (AEM) has not been elucidated. Therefore, this work studies AEMFC carbonation using numerous high-functioning AEMs from the literature and it was found that the ionic conductivity of the AEM plays the most critical role in the CO2-related voltage loss from carbonation, with the degree of AEM crystallinity playing a minor role. In short, higher conductivity-resulting either from a reduction in the membrane thickness or a change in the polymer chemistry-results in faster CO2 migration and emission from the anode side. Although this does lead to a lower overall degree of carbonation in the polymer, it also increases CO2-related voltage loss. Additionally, an operando neutron imaging cell is used to show that as AEMFCs become increasingly carbonated their water content is reduced, which further drives down cell performance.

5.
J Otol ; 15(3): 77-85, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32884557

ABSTRACT

The ears are air-filled structures that are directly impacted during blast exposure. In addition to hearing loss and tinnitus, blast victims often complain of vertigo, dizziness and unsteady posture, suggesting that blast exposure induces damage to the vestibular end organs in the inner ear. However, the underlying mechanisms remain to be elucidated. In this report, single vestibular afferent activity and the vestibulo-ocular reflex (VOR) were investigated before and after exposure to blast shock waves (∼20 PSI) delivered into the left external ear canals of anesthetized rats. Single vestibular afferent activity was recorded from the superior branch of the left vestibular nerves of the blast-treated and control rats one day after blast exposure. Blast exposure reduced the spontaneous discharge rates of the otolith and canal afferents. Blast exposure also reduced the sensitivity of irregular canal afferents to sinusoidal head rotation at 0.5-2Hz. Blast exposure, however, resulted in few changes in the VOR responses to sinusoidal head rotation and translation. To the best of our knowledge, this is the first study that reports blast exposure-induced damage to vestibular afferents in an animal model. These results provide insights that may be helpful in developing biomarkers for early diagnosis of blast-induced vestibular deficits in military and civilian populations.

6.
Nat Commun ; 11(1): 3561, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678101

ABSTRACT

There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm-2 with voltage decay rate of only 32-µV h-1 - the best-reported durability to date.

7.
J Am Chem Soc ; 142(2): 1083-1089, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31846313

ABSTRACT

Cations are crucial components in emerging functional polyelectrolytes for a myriad of applications. Rapid development in this area necessitates the exploration of new cations with advanced properties. Herein we describe a combination of computational and experimental design of cobaltocene metallo-cations that have distinct electronic and redox properties. One of the direct outcomes on the first synthesis of a complete set of cation derivatives is to discover highly stable cations, which are further integrated to construct metallo-polyelectrolytes as anion-exchange membranes in solid-state alkaline fuel cells. The device performance of these polyelectrolytes under highly basic and oxidative environments is competitive with many organo-polyelectrolytes.

8.
Nat Commun ; 10(1): 2306, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127108

ABSTRACT

Solid polymer electrolyte electrochemical energy conversion devices that operate under highly alkaline conditions afford faster reaction kinetics and the deployment of inexpensive electrocatalysts compared with their acidic counterparts. The hydroxide anion exchange polymer is a key component of any solid polymer electrolyte device that operates under alkaline conditions. However, durable hydroxide-conducting polymer electrolytes in highly caustic media have proved elusive, because polymers bearing cations are inherently unstable under highly caustic conditions. Here we report a systematic investigation of novel arylimidazolium and bis-arylimidazolium compounds that lead to the rationale design of robust, sterically protected poly(arylimidazolium) hydroxide anion exchange polymers that possess a combination of high ion-exchange capacity and exceptional stability.

9.
Angew Chem Int Ed Engl ; 58(4): 1046-1051, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30414220

ABSTRACT

Efficient and durable nonprecious metal electrocatalysts for the oxygen reduction (ORR) are highly desirable for several electrochemical devices, including anion exchange membrane fuel cells (AEMFCs). Here, a 2D planar electrocatalyst with CoOx embedded in nitrogen-doped graphitic carbon (N-C-CoOx ) was created through the direct pyrolysis of a metal-organic complex with a NaCl template. The N-C-CoOx catalyst showed high ORR activity, indicated by excellent half-wave (0.84 V vs. RHE) and onset (1.01 V vs. RHE) potentials. This high intrinsic activity was also observed in operating AEMFCs where the kinetic current was 100 mA cm-2 at 0.85 V. When paired with a radiation-grafted ETFE powder ionomer, the N-C-CoOx AEMFC cathode was able to achieve extremely high peak power density (1.05 W cm-2 ) and mass transport limited current (3 A cm-2 ) for a precious metal free electrode. The N-C-CoOx cathode also showed good stability over 100 hours of operation with a voltage decay of only 15 % at 600 mA cm-2 under H2 /air (CO2 -free) reacting gas feeds. The N-C-CoOx cathode catalyst was also paired with a very low loading PtRu/C anode catalyst, to create AEMFCs with a total PGM loading of only 0.10 mgPt-Ru cm-2 capable of achieving 7.4 W mg-1 PGM as well as supporting a current of 0.7 A cm-2 at 0.6 V with H2 /air (CO2 free)-creating a cell that was able to meet the 2019 U.S. Department of Energy initial performance target of 0.6 V at 0.6 A cm-2 under H2 /air with a PGM loading <0.125 mg cm-2 with AEMFCs for the first time.

10.
ChemSusChem ; 11(7): 1136-1150, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29377635

ABSTRACT

Over the past 10 years, there has been a surge of interest in anion-exchange membrane fuel cells (AEMFCs) as a potentially lower cost alternative to proton-exchange membrane fuel cells (PEMFCs). Recent work has shown that AEMFCs achieve nearly identical performance to that of state-of-the-art PEMFCs; however, much of that data has been collected while feeding CO2 -free air or pure oxygen to the cathode. Usually, removing CO2 from the oxidant is done to avoid the detrimental effect of CO2 on AEMFC performance, through carbonation, whereby CO2 reacts with the OH- anions to form HCO3- and CO32- . In spite of the crucial importance of this topic for the future development and commercialization of AEMFCs, unfortunately there have been very few investigations devoted to this phenomenon and its effects. Much of the data available is widely spread out and there currently does not exist a resource that researchers in the field, or those looking to enter the field, can use as a reference text that explains the complex influence of CO2 and HCO3- /CO32- on all aspects of AEMFC performance. The purpose of this Review is to summarize the experimental and theoretical work reported to date on the effect of ambient CO2 on AEMFCs. This systematic Review aims to create a single comprehensive account of what is known regarding how CO2 behaves in AEMFCs, to date, as well as identify the most important areas for future work in this field.

11.
ACS Appl Mater Interfaces ; 10(2): 1734-1742, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29264918

ABSTRACT

Selective electrochemical reduction of CO2 is one of the most important processes to study because of its promise to convert this greenhouse gas to value-added chemicals at low cost. In this work, a simple anodization treatment was devised that first oxidizes Ag to Ag2CO3, then uses rapid electrochemical reduction to create preferentially oriented nanoparticles (PONs) of metallic Ag (PON-Ag) with high surface area as well as high activity and very high selectivity for the reduction of CO2 to CO. The PON-Ag catalyst was dominated by (110) and (100) orientation, which allowed PON-Ag to achieve a CO Faradaic efficiency of 96.7% at an operating potential of -0.69 V vs RHE. This performance is not only significantly higher than that of polycrystalline Ag (60% at -0.87 V vs RHE) but also represents one of the best combinations of activity and selectivity achieved to date - all with a very simple, scalable approach to electrode fabrication.

12.
Biomed Opt Express ; 8(4): 2324-2338, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28736674

ABSTRACT

Fiber bundle microendoscopic imaging of colorectal tissue has shown promising results, for both qualitative and quantitative analysis. A quantitative image quality control and image feature extraction algorithm was previously designed for quantitative image feature analysis of proflavine-stained ex vivo colorectal tissue. We investigated fluorescein as an alternative topical stain. Images of ex vivo porcine, caprine, and human colorectal tissue were used to compare microendoscopic images of tissue topically stained with fluorescein and proflavine solutions. Fluorescein was shown to be comparable for automated crypt detection, with an average crypt detection sensitivity exceeding 90% using a combination of three contrast limit pairs.

13.
Nanotechnology ; 28(15): 155403, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28303794

ABSTRACT

MnO is an electrically insulating material which limits its usefulness in lithium ion batteries. We demonstrate that the electrochemical performance of MnO can be greatly improved by using oxygen-functional groups created on the outer walls of multiwalled carbon nanotubes (MWCNTs) as nucleation sites for metal oxide nanoparticles. Based on the mass of the active material used in the preparation of electrodes, the composite conversion-reaction anode material Mn1-x Co x O/MWCNT with x = 0.2 exhibited the highest reversible specific capacity, 790 and 553 mAhg-1 at current densities of 40 and 1600 mAg-1, respectively. This is 3.1 times higher than that of MnO/MWCNT at a charge rate of 1600 mAg-1. Phase segregation in the [Formula: see text] nanoparticles was not observed for x ≤ 0.15. Capacity retention in x = 0, 0.2, and 1 electrodes showed that the corresponding specific capacities were stabilized at 478, 709 and 602 mAhg-1 respectively, after 55 cycles at a current density of 400 mAg-1. As both MnO and CoO exhibit similar theoretical capacities and MnO/MWCNT and CoO/MWCNT anodes both exhibit lower performance than Mn0.8Co0.2O/MWCNT, the improved performance of the [Formula: see text] alloy likely arises from beneficial synergistic interactions in the bimetallic system.

14.
Sci Rep ; 6: 25860, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27167615

ABSTRACT

The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene incorporation and In-doping to increase the electronic conductivity and concomitantly improve capacity retention and cycle life. It was found that the incorporation of In into SnO2 reduces the charge transfer resistance during cycling, prolonging life. It is also hypothesized that the increased conductivity allows the tin oxide conversion and alloying reactions to both be reversible, leading to very high capacity near 1200 mAh/g. Finally, the electrodes show excellent rate capability with a capacity of over 200 mAh/g at 10C.

15.
J Assoc Res Otolaryngol ; 17(4): 303-11, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27105980

ABSTRACT

Tone burst-evoked myogenic potentials recorded from tonically contracted sternocleidomastoid muscles (SCM) (cervical VEMP or cVEMP) are widely used to assess the vestibular function. Since the cVEMP response is mediated by the vestibulo-collic reflex (VCR) pathways, it is important to understand how the cVEMPs are determined by factors related to either the sensory components (vestibular end organs) or the motor components (SCM) of the VCR pathways. Compared to the numerous studies that have investigated effects of sound parameters on the cVEMPs, there are few studies that have examined effects of SCM-related factors on the cVEMPs. The goal of the present study is to fill this knowledge gap by testing three SCM-related hypotheses. The first hypothesis is that contrary to the current view, the cVEMP response is only present in the SCM ipsilateral to the stimulated ear. The second hypothesis is that the cVEMP response is not only dependent on tonic level of the SCM, but also on how the tonic level is achieved, i.e., by head rotation or head flexion. The third hypothesis is that the SCM is compartmented and the polarity of the cVEMP response is dependent on the recording site. Seven surface electrodes were positioned along the left SCMs in 12 healthy adult subjects, and tone bursts were delivered to the ipsilateral or contralateral ear (8 ms plateau, 1 ms rise/fall, 130 dB SPL, 50-4000 Hz) while subjects activated their SCMs by head rotation (HR condition) or chin downward head flexion (CD condition). The first hypothesis was confirmed by the finding that the contralateral cVEMPs were minimal at all recording sites for all the tested tones during both HR and CD conditions. The second hypothesis was confirmed by the finding that the ipsilateral cVEMPs were larger in HR condition than in CD condition at recording sites above and below the SCM midpoint. Finally, the third hypothesis was confirmed by the finding that the cVEMPs exhibit reversed polarities at the sites near the mastoid and the sternal head. These results improve understanding of the cVEMP generation and suggest that the SCM-related factors should be taken into consideration when developing standardized clinical cVEMP testing protocols.


Subject(s)
Neck Muscles/physiology , Vestibular Evoked Myogenic Potentials , Adult , Female , Humans , Male , Posture , Young Adult
16.
Hear Res ; 335: 118-127, 2016 05.
Article in English | MEDLINE | ID: mdl-26970474

ABSTRACT

Some individuals with noise-induced hearing loss (NIHL) also report balance problems. These accompanying vestibular complaints are not well understood. The present study used a rat model to examine the effects of noise exposure on the vestibular system. Rats were exposed to continuous broadband white noise (0-24 kHz) at an intensity of 116 dB sound pressure level (SPL) via insert ear phones in one ear for three hours under isoflurane anesthesia. Seven days after the exposure, a significant increase in ABR threshold (43.3 ± 1.9 dB) was observed in the noise-exposed ears, indicating hearing loss. Effects of noise exposure on vestibular function were assessed by three approaches. First, fluorescein-conjugated phalloidin staining was used to assess vestibular stereocilia following noise exposure. This analysis revealed substantial sensory stereocilia bundle loss in the saccular and utricular maculae as well as in the anterior and horizontal semicircular canal cristae, but not in the posterior semicircular canal cristae. Second, single unit recording of vestibular afferent activity was performed under pentobarbital anesthesia. A total of 548 afferents were recorded from 10 noise-treated rats and 12 control rats. Noise exposure produced a moderate reduction in baseline firing rates of regular otolith afferents and anterior semicircular canal afferents. Also a moderate change was noted in the gain and phase of the horizontal and anterior semicircular canal afferent's response to sinusoidal head rotation (1 and 2 Hz, 45°/s peak velocity). Third, noise exposure did not result in significant changes in gain or phase of the horizontal rotational and translational vestibulo-ocular reflex (VOR). These results suggest that noise exposure not only causes hearing loss, but also causes substantial damage in the peripheral vestibular system in the absence of immediate clinically measurable vestibular signs. These peripheral deficits, however, may lead to vestibular disorders over time.


Subject(s)
Hearing Loss, Noise-Induced/physiopathology , Noise/adverse effects , Vestibule, Labyrinth/physiopathology , Animals , Evoked Potentials, Auditory, Brain Stem , Female , Male , Neurons, Afferent/pathology , Otolithic Membrane/pathology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Reflex, Vestibulo-Ocular , Rotation , Semicircular Canals/pathology , Vestibular Nerve/physiopathology
17.
ACS Nano ; 9(2): 1108-16, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25652125

ABSTRACT

The majority of deaths from all cancers, including colorectal cancer (CRC), is a result of tumor metastasis to distant organs. To date, an effective and safe system capable of exclusively targeting metastatic cancers that have spread to distant organs or lymph nodes does not exist. Here, we constructed multifunctional RNA nanoparticles, derived from the three-way junction (3WJ) of bacteriophage phi29 motor pRNA, to target metastatic cancer cells in a clinically relevant mouse model of CRC metastasis. The RNA nanoparticles demonstrated metastatic tumor homing without accumulation in normal organ tissues surrounding metastatic tumors. The RNA nanoparticles simultaneously targeted CRC cancer cells in major sites of metastasis, such as liver, lymph nodes, and lung. Our results demonstrate the therapeutic potential of these RNA nanoparticles as a delivery system for the treatment of CRC metastasis.


Subject(s)
Colorectal Neoplasms/pathology , Drug Carriers/chemistry , Nanoparticles/chemistry , RNA, Viral/chemistry , RNA, Viral/metabolism , Animals , Bacillus Phages , Base Sequence , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Folate Receptor 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lymphatic Metastasis , Male , Mice , Molecular Targeted Therapy , RNA Stability , RNA, Viral/administration & dosage , RNA, Viral/genetics
18.
J Am Acad Audiol ; 25(8): 775-81, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25380123

ABSTRACT

BACKGROUND: The Maryland consonant-vowel nucleus-consonant (CNC) Test is routinely used in Veterans Administration medical centers, yet there is a paucity of published normative data for this test. PURPOSE: The purpose of this study was to provide information on the means and distribution of word-recognition scores on the Maryland CNC Test as a function of degree of hearing loss for a veteran population. RESEARCH DESIGN: A retrospective, descriptive design was conducted. STUDY SAMPLE: The sample consisted of records from veterans who had Compensation and Pension (C&P) examinations at a Veterans Administration medical center (N = 1,760 ears). DATA COLLECTION AND ANALYSIS: Audiometric records of veterans who had C&P examinations during a 10 yr period were reviewed, and the pure-tone averages (PTA4) at four frequencies (1000, 2000, 3000, and 4000 Hz) were documented. The maximum word-recognition score (PBmax) was determined from the performance-intensity functions obtained using the Maryland CNC Test. Correlations were made between PBmax and PTA4. RESULTS: A wide range of word-recognition scores were obtained at all levels of PTA4 for this population. In addition, a strong negative correlation between the PBmax and the PTA4 was observed, indicating that as PTA4 increased, PBmax decreased. Word-recognition scores decreased significantly as hearing loss increased beyond a mild hearing loss. Although threshold was influenced by age, no statistically significant relationship was found between word-recognition score and the age of the participants. CONCLUSIONS: RESULTS from this study provide normative data in table and figure format to assist audiologists in interpreting patient results on the Maryland CNC test for a veteran population. These results provide a quantitative method for audiologists to use to interpret word-recognition scores based on pure-tone hearing loss.


Subject(s)
Hearing Loss/diagnosis , Phonetics , Speech Discrimination Tests , Speech Perception/physiology , Data Collection , Humans , Recognition, Psychology , Retrospective Studies , Veterans
19.
Article in English | MEDLINE | ID: mdl-24994970

ABSTRACT

Past studies have shown that reward contingency is critical for sensorimotor learning, and reward expectation speeds up saccades in animals. Whether monetary reward speeds up saccades in human remains unknown. Here we addressed this issue by employing a conditional saccade task, in which human subjects performed a series of non-reflexive, visually-guided horizontal saccades. The subjects were (or were not) financially compensated for making a saccade in response to a centrally-displayed visual congruent (or incongruent) stimulus. Reward modulation of saccadic velocities was quantified independently of the amplitude-velocity coupling. We found that reward expectation significantly sped up voluntary saccades up to 30°/s, and the reward modulation was consistent across tests. These findings suggest that monetary reward speeds up saccades in human in a fashion analogous to how juice reward sped up saccades in monkeys. We further noticed that the idiosyncratic nasal-temporal velocity asymmetry was highly consistent regardless of test order, and its magnitude was not correlated with the magnitude of reward modulation. This suggests that reward modulation and the intrinsic velocity asymmetry may be governed by separate mechanisms that regulate saccade generation.

20.
J Miss State Med Assoc ; 55(8): 256-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25771621

ABSTRACT

The prevalence of permanent congenital hearing loss is three to four infants per thousand live births. Because early intervention is effective in preventing speech and language delay, the NIH has recommended universal newborn hearing screening. Prior to this recommendation, several states, including Mississippi which had one of the first hospital based screening programs, had statewide programs. In 1981 the Lions Clubs of Mississippi and the University of Mississippi Medical Center began an infant hearing screening program, which was described in Volume XXX of The Journal of the Mississippi State Medical Association. This program was recognized in 1986 with an award from the U.S. Secretary of Health and Human Services, and by 1989, the Lions Club had persuaded twenty-two hospitals that this was a needed service. Twelve years after the start of the program in Mississippi, the National Institutes of Health (NIH) recommended universal newborn hearing screening. This article reviews Mississippi's efforts toward early identification of hearing loss and provides an update on the current screening program.


Subject(s)
Hearing Disorders/congenital , Hearing Disorders/history , Female , Hearing Disorders/diagnosis , Hearing Disorders/epidemiology , Hearing Tests/history , History, 20th Century , History, 21st Century , Humans , Infant , Infant, Newborn , Male , Mississippi/epidemiology , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...