Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
PLoS One ; 18(10): e0289976, 2023.
Article in English | MEDLINE | ID: mdl-37883386

ABSTRACT

The methanotrophic bacterium Methylotuvimicrobium alcaliphilum 20Z is an industrially promising candidate for bioconversion of methane into value-added chemicals. Here, we have study the metabolic consequences of the breaking in the tricarboxylic acid (TCA) cycle by fumarase knockout. Two fumarases belonging to non-homologous class I and II fumarases were obtained from the bacterium by heterologous expression in Escherichia coli. Class I fumarase (FumI) is a homodimeric enzyme catalyzing the reversible hydration of fumarate and mesaconate with activities of ~94 and ~81 U mg-1 protein, respectively. The enzyme exhibited high activity under aerobic conditions, which is a non-typical property for class I fumarases characterized to date. The calculation of kcat/S0.5 showed that the enzyme works effectively with either fumarate or mesaconate, but it is almost four times less specific to malate. Class II fumarase (FumC) has a tetrameric structure and equal activities of both fumarate hydration and malate dehydration (~45 U mg-1 protein). Using mutational analysis, it was shown that both forms of the enzyme are functionally interchangeable. The triple mutant strain 20Z-3E (ΔfumIΔfumCΔmae) deficient in the genes encoding the both fumarases and the malic enzyme accumulated 2.6 and 1.1 mmol g-1 DCW fumarate in the medium when growing on methane and methanol, respectively. Our data suggest the redundancy of the metabolic node in the TCA cycle making methanotroph attractive targets for modification, including generation of strains producing the valuable metabolites.


Subject(s)
Fumarate Hydratase , Malates , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Escherichia coli/genetics , Methane/metabolism , Fumarates
3.
Curr Microbiol ; 80(9): 311, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37540350

ABSTRACT

The genome of aerobic methanotroph Methylococcus capsulatus Bath possesses genes of three biochemical pathways of C1-carbon assimilation: the ribulose monophosphate cycle, the Calvin-Benson-Bassham cycle, and the partial serine cycle. Numerous studies have demonstrated that during methanotrophic growth cells of Methylococcus capsulatus Bath express key enzymes of these routes. In this study, the role of the serine cycle key enzymes, serine-glyoxylate aminotransferase (Sga) and malyl-CoA lyase (Mcl) in metabolism of Methylococcus capsulatus Bath was investigated by gene inactivation. The Δsga mutant obtained by double homologous recombination showed a prolonged lag phase, and after the lag period, the growth rate became similar to that of the wild type strain. The elevated intracellular levels of glutamate, serine, glycine, alanine, methionine, leucine, and succinate suggested significant metabolic changes in the mutant cells. Deletion of the mcl gene resulted in very poor growth and glycine only partially improved growth of the mutant strain. Cells of Δmcl mutant possess lower content of histidine, but enhanced level of alanine, leucine, and lysine than those of the wild type strain. Our data imply the importance of the serine cycle enzymes in metabolism of the methanotroph as well as relationships of the three C1 assimilation pathways in the gammaproteobacterial methanotrophs.


Subject(s)
Methylococcus capsulatus , Methylococcus capsulatus/genetics , Methylococcus capsulatus/metabolism , Leucine , Serine/metabolism , Glycine/metabolism
4.
Antonie Van Leeuwenhoek ; 116(5): 393-413, 2023 May.
Article in English | MEDLINE | ID: mdl-36719530

ABSTRACT

The impact of periplasmic localisation on the functioning of the XoxF protein was evaluated in the well-studied dichloromethane-utilising methylotroph Methylorubrum extorquens DM4, which harbors only one paralogue of the xoxF gene. It was found that the cytoplasmic targeting of XoxF by expression of the corresponding gene without the sequence encoding the N-terminal signal peptide does not impair the activation and lanthanide-dependent regulation of the MxaFI-methanol dehydrogenase genes. Analysis of the viability of ΔxoxF cells complemented with the full-length and truncated xoxF gene also showed that the expression of cytoplasmically targeted XoxF even increases the resistance to acids. These results contradict the proposed function of the XoxF protein as an extracytoplasmic signal sensor. At the same time, the observed dynamics of growth with methanol, as well as with dichloromethane of strains expressing cytoplasmic-targeted XoxF, indicate the probable enzymatic activity of lanthanide-dependent methanol dehydrogenase in this compartment. Herewith, the only available substrate for this enzyme in cells growing with dichloromethane was formaldehyde, which is produced during the primary metabolism of the mentioned halogenated toxicant directly in the cytosol. These findings suggest that the maturation of XoxF-methanol dehydrogenase may occur already in the cytoplasm, while the factors changing affinity of this enzyme for formaldehyde are apparently absent there. Together with the demonstrated functioning of an enhancer-like upstream activating sequence in the promoter region of the xoxF gene in M. extorquens DM4, the obtained information enriches our understanding of the regulation, synthesis and role of the XoxF protein.


Subject(s)
Lanthanoid Series Elements , Methylobacterium extorquens , Cytosol , Methylene Chloride/metabolism , Methylobacterium extorquens/genetics , Methylobacterium extorquens/metabolism , Methanol/metabolism , Bacterial Proteins/metabolism , Lanthanoid Series Elements/metabolism , Formaldehyde/metabolism , Alcohol Oxidoreductases/metabolism
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142248

ABSTRACT

(Ca2+)-dependent pyrroloquinolinequinone (PQQ)-dependent methanol dehydrogenase (MDH) (EC: 1.1.2.7) is one of the key enzymes of primary C1-compound metabolism in methylotrophy. PQQ-MDH is a promising catalyst for electrochemical biosensors and biofuel cells. However, the large-scale use of PQQ-MDH in bioelectrocatalysis is not possible due to the low yield of the native enzyme. Homologously overexpressed MDH was obtained from methylotrophic bacterium Methylorubrum extorquens AM1 by cloning the gene of only one subunit, mxaF. The His-tagged enzyme was easily purified by immobilized metal ion affinity chromatography (36% yield). A multimeric form (α6ß6) of recombinant PQQ-MDH possessing enzymatic activity (0.54 U/mg) and high stability was demonstrated for the first time. pH-optimum of the purified protein was about 9-10; the enzyme was activated by ammonium ions. It had the highest affinity toward methanol (KM = 0.36 mM). The recombinant MDH was used for the fabrication of an amperometric biosensor. Its linear range for methanol concentrations was 0.002-0.1 mM, the detection limit was 0.7 µM. The properties of the invented biosensor are competitive to the analogs, meaning that this enzyme is a promising catalyst for industrial methanol biosensors. The developed simplified technology for PQQ-MDH production opens up new opportunities for the development of bioelectrocatalytic systems.


Subject(s)
Ammonium Compounds , Methylobacterium extorquens , Alcohol Oxidoreductases/metabolism , Ions , Methanol/metabolism , Methylobacterium extorquens/genetics
6.
Antonie Van Leeuwenhoek ; 115(9): 1165-1176, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35867173

ABSTRACT

It has been previously shown that a number of plant associated methylotrophic bacteria contain an enzyme aminocyclopropane carboxylate (ACC) deaminase (AcdS) hydrolyzing ACC, the immediate precursor of ethylene in plants. The genome of the epiphytic methylotroph Methylobacterium radiotolerans JCM2831 contains an open reading frame encoding a protein homologous to transcriptional regulatory protein AcdR of the Lrp (leucine-responsive regulatory protein) family. The acdR gene of M. radiotolerans was heterologously expressed in Escherichia coli and purified. The results of gel retardation experiments have shown that AcdR specifically binds the DNA fragment containing the promoter-operator region of the acdS gene. ACC decreased electrophoretic mobility of the AcdR-DNA complex whereas leucine had no effect on the complex mobility. The mutant strains of M. radiotolerans obtained by insertion of a tetracycline cassette in the acdS or acdR gene lost the ACC-deaminase activity but the strains with complementation of the mutation recovered this function. The acdS- mutant but not acdR- strain expressed the xylE reporter gene under the control of acdS promoter region thus resulting in a catechol 2,3-dioxygenase activity. This suggested that AcdR in vivo functions as activator of transcription of the acdS gene. The results obtained in this study showed that in phytosymbiotic methylotroph Methylobacterium radiotolerans AcdR mediates activation of the acdS gene transcription in the presence of an inducer ACC or 2-aminoisobutyrate and the excess of the regulatory protein assists in transcription initiation even in the absence of the inducer. The model of regulation of acdS transcription in M. radiotolerans was proposed.


Subject(s)
Carbon-Carbon Lyases , Methylobacterium , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Methylobacterium/genetics , Methylobacterium/metabolism , Promoter Regions, Genetic , Transcription, Genetic
7.
Biotechnol Lett ; 43(7): 1421-1427, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33860390

ABSTRACT

OBJECTIVES: Alteration of the cofactor specificity of acrylyl-CoA reductase (AcuI) catalyzing the NAD(P)H-dependent reduction of acrylyl-CoA to propionyl-CoA is often desirable for designing of artificial metabolic pathways of various appointments. RESULTS: Several variants of AcuIs from Escherichia coli K-12 with multiple amino acid substitutions to alter the cofactor preference were obtained by site directed mutagenesis and the modified enzymes as His6-tagged proteins were characterized. The simultaneous substitutions of arginine-180, arginine-198 and serine-178 residues by alanine in the enzyme pocket sequence as well as other amino acid changes decreased both NADPH- and NADH-dependent activities in comparison to the wild-type enzyme. The replacement of serine-156 by glutamic acid decreased NADPH-dependent activity at least 7000-fold but NADH-dependent activity only by threefold. The replacement of serine-156 by aspartic acid decreased NADPH-dependent activity 70-fold with fair preservation of activity and specificity to NADH. CONCLUSIONS: These results demonstrated a relevance of Asp156 in the interaction of AcuI from E. coli K-12 with NADH as a coenzyme. These findings may provide reference information for shifting coenzyme specificity of acrylyl-CoA reductases.


Subject(s)
Amino Acid Substitution , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Quinone Reductases/genetics , Quinone Reductases/metabolism , Arginine/metabolism , Aspartic Acid/metabolism , Escherichia coli/genetics , Glutamic Acid/metabolism , Mutagenesis, Site-Directed , NAD/metabolism , NADP/metabolism , Protein Engineering , Serine/metabolism , Substrate Specificity
8.
Sci Rep ; 11(1): 8795, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888823

ABSTRACT

Aerobic methanotrophic bacteria utilize methane as a growth substrate but are unable to grow on any sugars. In this study we have shown that two obligate methanotrophs, Methylotuvimicrobium alcaliphilum 20Z and Methylobacter luteus IMV-B-3098, possess functional glucose dehydrogenase (GDH) and gluconate kinase (GntK). The recombinant GDHs from both methanotrophs were homotetrameric and strongly specific for glucose preferring NAD+ over NADP+. GDH from Mtm. alcaliphilum was most active at pH 10 (Vmax = 95 U/mg protein) and demonstrated very high Km for glucose (91.8 ± 3.8 mM). GDH from Mb. luteus was most active at pH 8.5 (Vmax = 43 U/mg protein) and had lower Km for glucose (16 ± 0.6 mM). The cells of two Mtm. alcaliphilum double mutants with deletions either of the genes encoding GDH and glucokinase (gdh─/glk─) or of the genes encoding gluconate kinase and glucokinase (gntk─/glk─) had the lower glycogen level and the higher contents of intracellular glucose and trehalose compared to the wild type strain. The gntk─/glk─ knockout mutant additionally accumulated gluconic acid. These data, along with bioinformatics analysis, demonstrate that glycogen derived free glucose can enter the Entner-Doudoroff pathway or the pentose phosphate cycle in methanotrophs, bypassing glycolysis via the gluconate shunt.


Subject(s)
Glucose 1-Dehydrogenase/metabolism , Glucose/metabolism , Methylococcaceae/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Catalysis , Kinetics , Mutation , NADP/metabolism , Phylogeny , Promoter Regions, Genetic
9.
PLoS One ; 15(4): e0232244, 2020.
Article in English | MEDLINE | ID: mdl-32353000

ABSTRACT

BACKGROUND: Microorganisms living in saline environments are forced to regulate turgor via the synthesis of organic osmoprotective compounds. Microbial adaptation to fluctuations in external salinity includes degradation of compatible solutes. Here we have examined the biochemical pathway of degradation of the cyclic imino acid ectoine, the major osmoprotector in halotolerant methane-utilizing bacteria. METHODS: The BLAST search of the genes involved in ectoine degradation in the halotolerant methanotroph Methylotuvimicrobium alcaliphilum 20Z was performed with the reference sequences of Halomonas elongata. The genes for the key enzymes of the pathway were disrupted by insertion mutagenesis and the cellular metabolites in the methanol extracts of mutant cells were analyzed by HPLC. The doeA gene from Mm. alcaliphilum 20Z was heterologously expressed in Escherichia coli to identify the product of ectoine hydrolysis catalyzed by ectoine hydrolase DoeA. RESULTS: We have shown that the halotolerant methanotroph Mm. alcaliphilum 20Z possesses the doeBDAC gene cluster coding for putative ectoine hydrolase (DoeA), Nα-acetyl-L-2,4-diaminobutyrate deacetylase (DoeB), diaminobutyrate transaminase (DoeD) and aspartate-semialdehyde dehydrogenase (DoeC). The deletion of the doeA gene resulted in accumulation of the higher level of ectoine compared to the wild type strain. Nγ-acetyl-L-2,4-diaminobutyrate (Nγ-acetyl-DAB), a substrate for ectoine synthase, was found in the cytoplasm of the wild type strain. Nα-acetyl-L-2,4-diaminobutyrate (Nα-acetyl-DAB), a substrate for the DoeB enzyme, appeared in the cells as a result of exposure of the doeB mutant to low osmotic pressure. The genes for the enzymes involved in ectoine degradation were found in all aerobic methylotrophs capable of ectoine biosynthesis. These results provide the first evidence for the in vivo operation of the ectoine degradation pathway in methanotrophs and thus expand our understanding of the regulation mechanisms of bacterial osmoadaptation. CONCLUSIONS: During adaptation to the changes in external osmolarity, halophilic and halotolerant methylotrophs cleave ectoine, thereby entering the carbon and nitrogen of the compatible solute to the central metabolic pathways. The biochemical route of ectoine degradation in the halotolerant methanotroph Mm. alcaliphilum 20Z is similar to that in heterotrophic halophiles. We have shown that ectoine hydrolase DoeA in this methanotroph hydrolyzes ectoine with the formation of the only isomer: Nα-acetyl-DAB. All aerobic methylotrophs capable of ectoine biosynthesis harbor the genetic determinants for ectoine degradation.


Subject(s)
Amino Acids, Diamino/metabolism , Metabolic Networks and Pathways/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/genetics , Genes, Bacterial/genetics , Halomonas/genetics , Halomonas/metabolism , Metabolic Networks and Pathways/genetics , Methylococcaceae/genetics , Methylococcaceae/metabolism , Multigene Family/genetics , Osmotic Pressure/physiology , Salinity
10.
PLoS One ; 14(11): e0225054, 2019.
Article in English | MEDLINE | ID: mdl-31738793

ABSTRACT

The bacteria utilizing methane as a growth substrate (methanotrophs) are important constituents of the biosphere. Methanotrophs mitigate the emission of anthropogenic and natural greenhouse gas methane to the environment and are the promising agents for future biotechnologies. Many aspects of CH4 bioconversion by methanotrophs require further clarification. This study was aimed at characterizing the biochemical properties of the malic enzyme (Mae) from the halotolerant obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z. The His6-tagged Mae was obtained by heterologous expression in Escherichia coli BL21 (DE3) and purified by affinity metal chelating chromatography. As determined by gel filtration and non-denaturating gradient gel electrophoresis, the molecular mass of the native enzyme is 260 kDa. The homotetrameric Mae (65x4 kDa) catalyzed an irreversible NAD+-dependent reaction of L-malate decarboxylation into pyruvate with a specific activity of 32 ± 2 units mg-1 and Km value of 5.5 ± 0.8 mM for malate and 57 ± 5 µM for NAD+. The disruption of the mae gene by insertion mutagenesis resulted in a 20-fold increase in intracellular malate level in the mutant compared to the wild type strain. Based on both enzyme and mutant properties, we conclude that the malic enzyme is involved in the control of intracellular L-malate level in Mtm. alcaliphilum 20Z. Genomic analysis has revealed that Maes present in methanotrophs fall into two different clades in the amino acid-based phylogenetic tree, but no correlation of the division with taxonomic affiliations of the host bacteria was observed.


Subject(s)
Bacterial Proteins/metabolism , Energy Metabolism , Methane/metabolism , Methylococcaceae/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cloning, Molecular , Gene Expression , Genomics/methods , Metabolic Networks and Pathways , Metals/metabolism , Methylococcaceae/classification , Methylococcaceae/enzymology , Methylococcaceae/genetics , Mutation , Phenotype , Phylogeny , Recombinant Proteins
11.
Microorganisms ; 7(2)2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30769875

ABSTRACT

The genes encoding adenosine triphosphate (ATP)- and polyphosphate (polyP)-dependent glucokinases (Glk) were identified in the aerobic obligate methanotroph Methylomonas sp. 12. The recombinant proteins were obtained by the heterologous expression of the glk genes in Esherichia coli. ATP-Glk behaved as a multimeric protein consisting of di-, tri-, tetra-, penta- and hexamers with a subunit molecular mass of 35.5 kDa. ATP-Glk phosphorylated glucose and glucosamine using ATP (100% activity), uridine triphosphate (UTP) (85%) or guanosine triphosphate (GTP) (71%) as a phosphoryl donor and exhibited the highest activity in the presence of 5 mM Mg2+ at pH 7.5 and 65 °C but was fully inactivated after a short-term incubation at this temperature. According to a gel filtration in the presence of polyP, the polyP-dependent Glk was a dimeric protein (2 × 28 kDa). PolyP-Glk phosphorylated glucose, mannose, 2-deoxy-D-glucose, glucosamine and N-acetylglucosamine using polyP as the phosphoryl donor but not using nucleoside triphosphates. The Km values of ATP-Glk for glucose and ATP were about 78 µM, and the Km values of polyP-Glk for glucose and polyP(n=45) were 450 and 21 µM, respectively. The genomic analysis of methanotrophs showed that ATP-dependent glucokinase is present in all sequenced methanotrophs, with the exception of the genera Methylosinus and Methylocystis, whereas polyP-Glks were found in all species of the genus Methylomonas and in Methylomarinum vadi only. This work presents the first characterization of polyphosphate specific glucokinase in a methanotrophic bacterium.

12.
Extremophiles ; 22(3): 433-445, 2018 May.
Article in English | MEDLINE | ID: mdl-29442248

ABSTRACT

Four enzymes involved in sucrose metabolism: sucrose phosphate synthase (Sps), sucrose phosphate phosphatase (Spp), sucrose synthase (Sus) and fructokinase (FruK), were obtained as his-tagged proteins from the moderately thermophilic methanotroph Methylocaldum szegediense O12. Sps, Spp, FruK and Sus demonstrated biochemical properties similar to those of other bacterial counterparts, but the translated amino acid sequences of Sps and Spp displayed high divergence from the respective microbial enzymes. The Sus of M. szegediense O12 catalyzed the reversible reaction of sucrose cleavage in the presence of ADP or UDP and preferred ADP as a substrate, thus implying a connection between sucrose and glycogen metabolism. Sus-like genes were found only in a few methanotrophs, whereas amylosucrase was generally used in sucrose cleavage in this group of bacteria. Like other microbial fructokinases, FruK of M. szegediense O12 showed a high specificity to fructose.


Subject(s)
Bacterial Proteins/metabolism , Methylococcaceae/enzymology , Sucrose/metabolism , Bacterial Proteins/genetics , Fructokinases/genetics , Fructokinases/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Methylococcaceae/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism
13.
Antonie Van Leeuwenhoek ; 110(3): 375-386, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27915410

ABSTRACT

Aerobic bacteria utilizing methane as the carbon and energy source do not use sugars as growth substrates but possess the gene coding for glucokinase (Glk), an enzyme converting glucose into glucose 6-phosphate. Here we demonstrate the functionality and properties of Glk from an obligate methanotroph Methylomicrobium alcaliphilum 20Z. The recombinant Glk obtained by heterologous expression in Escherichia coli was found to be close in biochemical properties to other prokaryotic Glks. The homodimeric enzyme (2 × 35 kDa) catalyzed ATP-dependent phosphorylation of glucose and glucosamine with nearly equal activity, being inhibited by ADP (K i = 2.34 mM) but not affected by glucose 6-phosphate. Chromosomal deletion of the glk gene resulted in a loss of Glk activity and retardation of growth as well as in a decrease of intracellular glycogen content. Inactivation of the genes encoding sucrose phosphate synthase or amylosucrase, the enzymes involved in glycogen biosynthesis via sucrose as intermediate, did not prevent glycogen accumulation. In silico analysis revealed glk orthologs predominantly in methanotrophs harboring glycogen synthase genes. The data obtained suggested that Glk is implicated in the regulation of glycogen biosynthesis/degradation in an obligate methanotroph.


Subject(s)
Glucokinase/metabolism , Methylococcaceae/enzymology , Bacterial Proteins/genetics , Carbohydrate Metabolism , Cloning, Molecular , Enzyme Activation , Escherichia coli/genetics , Glucokinase/chemistry , Glucokinase/genetics , Glucosyltransferases/genetics , Glycogen/biosynthesis , Metabolic Networks and Pathways , Methylococcaceae/chemistry , Methylococcaceae/classification , Mutation , Phosphorylation , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sucrose/metabolism
14.
Genome Announc ; 4(6)2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27811106

ABSTRACT

The draft genome sequence of Methylophaga muralis strain Bur 1 (VKM B-3046T), a non-methane-utilizing methylotroph isolated from a soda lake, is reported here. Strain Bur 1 possesses genes for methanol and methylamine (methylamine dehydrogenase and N-methylglutamate pathway) oxidation. Genes for the biosynthesis of ectoine were also found.

15.
Antonie Van Leeuwenhoek ; 108(4): 965-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26275877

ABSTRACT

Recombinant acetate kinase (AcK) was obtained from the aerobic haloalkalitolerant methanotroph Methylomicrobium alcaliphilum 20Z by heterologous expression in Escherichia coli and purification by affinity chromatography. The substrate specificity, the kinetics and oligomeric state of the His6-tagged AcK were determined. The M. alcaliphilum AcK (2 × 45 kDa) catalyzed the reversible phosphorylation of acetate into acetyl phosphate and exhibited a dependence on Mg(2+) or Mn(2+) ions and strong specificity to ATP/ADP. The enzyme showed the maximal activity and high stability at 70 °C. AcK was 20-fold more active in the reaction of acetate synthesis compared to acetate phosphorylation and had a higher affinity to acetyl phosphate (K m 0.11 mM) than to acetate (K m 5.6 mM). The k cat /K m ratios indicated that the enzyme had a remarkably high catalytic efficiency for acetate and ATP formation (k cat/K m = 1.7 × 10(6)) compared to acetate phosphorylation (k cat/K m = 2.5 × 10(3)). The ack gene of M. alcaliphilum 20Z was shown to be co-transcribed with the xfp gene encoding putative phosphoketolase. The Blast analysis revealed the ack and xfp genes in most genomes of the sequenced aerobic methanotrophs, as well as methylotrophic bacteria not growing on methane. The distribution and metabolic role of the postulated phosphoketolase shunted glycolytic pathway in aerobic C1-utilizing bacteria is discussed.


Subject(s)
Acetate Kinase/metabolism , Aldehyde-Lyases/metabolism , Metabolic Networks and Pathways/genetics , Methylococcaceae/enzymology , Acetate Kinase/chemistry , Acetate Kinase/genetics , Chromatography, Affinity , Cloning, Molecular , Coenzymes/analysis , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Kinetics , Methylococcaceae/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Homology , Substrate Specificity , Temperature
16.
Arch Microbiol ; 197(3): 471-80, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25577257

ABSTRACT

Sucrose accumulation has been observed in some methylotrophic bacteria utilizing methane, methanol, or methylated amines as a carbon and energy source. In this work, we have investigated the biochemical pathways for sucrose metabolism in the model halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. The genes encoding sucrose-phosphate synthase (Sps), sucrose-phosphate phosphatase (Spp), fructokinase (FruK), and amylosucrase (Ams) were co-transcribed and displayed similar expression levels. Functional Spp and Ams were purified after heterologous expression in Escherichia coli. Recombinant Spp exhibited high affinity for sucrose-6-phosphate and stayed active at very high levels of sucrose (K i  = 1.0 ± 0.6 M). The recombinant amylosucrase obeyed the classical Michaelis-Menten kinetics in the reactions of sucrose hydrolysis and transglycosylation. As a result, the complete metabolic network for sucrose biosynthesis and re-utilization in the non-phototrophic organism was reconstructed for the first time. Comparative genomic studies revealed analogous gene clusters in various Proteobacteria, thus indicating that the ability to produce and metabolize sucrose is widespread among prokaryotes.


Subject(s)
Methylococcaceae/metabolism , Sucrose/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Kinetics , Methylococcaceae/enzymology , Methylococcaceae/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sucrose/analogs & derivatives , Sugar Phosphates/metabolism
17.
Microorganisms ; 3(1): 47-59, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-27682078

ABSTRACT

We have expressed the l-malate dehydrogenase (MDH) genes from aerobic methanotrophs Methylomicrobium alcaliphilum 20Z and Methylosinus trichosporium OB3b as his-tagged proteins in Escherichia coli. The substrate specificities, enzymatic kinetics and oligomeric states of the MDHs have been characterized. Both MDHs were NAD⁺-specific and thermostable enzymes not affected by metal ions or various organic metabolites. The MDH from M. alcaliphilum 20Z was a homodimeric (2 × 35 kDa) enzyme displaying nearly equal reductive (malate formation) and oxidative (oxaloacetate formation) activities and higher affinity to malate (Km = 0.11 mM) than to oxaloacetate (Km = 0.34 mM). The MDH from M. trichosporium OB3b was homotetrameric (4 × 35 kDa), two-fold more active in the reaction of oxaloacetate reduction compared to malate oxidation and exhibiting higher affinity to oxaloacetate (Km = 0.059 mM) than to malate (Km = 1.28 mM). The kcat/Km ratios indicated that the enzyme from M. alcaliphilum 20Z had a remarkably high catalytic efficiency for malate oxidation, while the MDH of M. trichosporium OB3b was preferable for oxaloacetate reduction. The metabolic roles of the enzymes in the specific metabolism of the two methanotrophs are discussed.

18.
J Bacteriol ; 195(10): 2207-11, 2013 May.
Article in English | MEDLINE | ID: mdl-23475964

ABSTRACT

We investigated phenotypes of mutants of Methylotenera mobilis JLW8 with lesions in genes predicted to encode functions of the denitrification pathway, as well as mutants with mutations in methanol dehydrogenase-like structural genes xoxF1 and xoxF2, in order to obtain insights into denitrification and methanol metabolism by this bacterium. By monitoring the accumulation of nitrous oxide, we demonstrate that a periplasmic nitrate reductase, NAD(P)-linked and copper-containing nitrite reductases, and a nitric oxide reductase are involved in the denitrification pathway and that the pathway must be operational in aerobic conditions. However, only the assimilatory branch of the denitrification pathway was essential for growth on methanol in nitrate-supplemented medium. Mutants with mutations in each of the two xoxF genes maintained their ability to grow on methanol, but not the double XoxF mutant, suggesting that XoxF proteins act as methanol dehydrogenase enzymes in M. mobilis JLW8. Reduced levels of nitrous oxide accumulated by the XoxF mutants compared to the wild type suggest that these enzymes must be capable of donating electrons for denitrification.


Subject(s)
Denitrification/physiology , Methanol/metabolism , Methylophilaceae/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation
19.
Extremophiles ; 15(6): 653-63, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21971967

ABSTRACT

The genes of ectoine biosynthesis pathway were identified in six species of aerobic, slightly halophilic bacteria utilizing methane, methanol or methylamine. Two types of ectoine gene cluster organization were revealed in the methylotrophs. The gene cluster ectABC coding for diaminobutyric acid (DABA) acetyltransferase (EctA), DABA aminotransferase (EctB) and ectoine synthase (EctC) was found in methanotrophs Methylobacter marinus 7C and Methylomicrobium kenyense AMO1(T). In methanotroph Methylomicrobium alcaliphilum ML1, methanol-utilizers Methylophaga thalassica 33146(T) , Methylophaga alcalica M8 and methylamine-utilizer Methylarcula marina h1(T), the genes forming the ectABC-ask operon are preceded by ectR, encoding a putative transcriptional regulatory protein EctR. Phylogenetic relationships of the Ect proteins do not correlate with phylogenetic affiliation of the strains, thus implying that the ability of methylotrophs to produce ectoine is most likely the result of a horizontal transfer event.


Subject(s)
Amino Acids, Diamino/biosynthesis , Biodiversity , Methylococcaceae/genetics , Phylogeny , Adaptation, Physiological , Base Sequence , DNA Primers , Genes, Bacterial , Methylococcaceae/classification , Methylococcaceae/physiology , Polymerase Chain Reaction/methods , Sodium Chloride
20.
Methods Enzymol ; 495: 15-30, 2011.
Article in English | MEDLINE | ID: mdl-21419912

ABSTRACT

Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) is a widely distributed compatible solute accumulated by halophilic and halotolerant microorganisms to prevent osmotic stress in highly saline environments. Ectoine as a highly water keeping compound stabilizing biomolecules and whole cells can be used in scientific work, cosmetics, and medicine. Detailed understanding of the organization/regulation of the ectoine biosynthetic pathway in various producers is an active area of research. Here we review current knowledge on some genetic and enzymatic aspects of ectoine biosynthesis in halophilic and halotolerant methanotrophs. By using PCR methodology, the genes coding for the specific enzymes of ectoine biosynthesis, diaminobutyric acid (DABA) aminotransferase (EctB), DABA acetyltransferase (EctA), and ectoine synthase (EctC), were identified in several methanotrophic species. Organization of these genes in either ectABC or ectABC-ask operons, the latter additionally encoding aspartate kinase isozyme (Ask), correlated well with methanotroph halotolerance and intracellular ectoine level. A new gene, ectR1 encoding the MarR-like transcriptional regulatory protein EctR1, negatively controlling transcription of ectoine biosynthetic genes was found upstream of ectABC-ask operon in Methylomicrobium alcaliphilum 20Z. The ectR-like genes were also found in halotolerant methanol utilizers Methylophaga alcalica and Methylophaga thalassica as well as in several genomes of nonmethylotrophic species. The His(6)-tagged DABA acetyltransferases from Mm. alcaliphilum, M. alcalica, and M. thalassica were purified and the enzyme properties were found to correlate with the ecophysiologies of these bacteria. All these discoveries should be very helpful for better understanding the biosynthetic mechanism of this important natural compound, and for the targeted metabolic engineering of its producers.


Subject(s)
Amino Acids, Diamino/genetics , Amino Acids, Diamino/metabolism , Methylococcaceae/enzymology , Methylococcaceae/genetics , Acetyltransferases/genetics , Acetyltransferases/metabolism , Amino Acid Sequence , Aspartate Kinase/genetics , Aspartate Kinase/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Molecular Sequence Data , Polymerase Chain Reaction/methods , Transaminases/genetics , Transaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...