Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 898558, 2022.
Article in English | MEDLINE | ID: mdl-35990636

ABSTRACT

For more than a couple of decades now, "force" has been recognized as an important physical parameter that cells employ to adapt to their microenvironment. Whether it is externally applied, or internally generated, cells use force to modulate their various actions, from adhesion and migration to differentiation and immune function. T lymphocytes use such mechano-sensitivity to decipher signals when recognizing cognate antigens presented on the surface of antigen presenting cells (APCs), a critical process in the adaptive immune response. As such, many techniques have been developed and used to measure the forces felt/exerted by these small, solitary and extremely reactive cells to decipher their influence on diverse T cell functions, primarily activation. Here, we focus on traction force microscopy (TFM), in which a deformable substrate, coated with the appropriate molecules, acts as a force sensor on the cellular scale. This technique has recently become a center of interest for many groups in the "ImmunoBiophysics" community and, as a consequence, has been subjected to refinements for its application to immune cells. Here, we present an overview of TFM, the precautions and pitfalls, and the most recent developments in the context of T cell immunology.


Subject(s)
Mechanical Phenomena , Traction , Microscopy, Atomic Force/methods
2.
STAR Protoc ; 3(1): 101133, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35128476

ABSTRACT

Traction force microscopy (TFM) is a popular technique for studying cellular stresses; however, the reproducible fabrication of ultrasoft substrates for the reliable detection of weak cellular stresses (below 100 Pa) remains a challenge. Here, we describe a simple in vitro TFM protocol using such ultrasoft protein-coated polyacrylamide gels and wide-field fluorescence microscopy. We complement the protocol with open-source and in-house scripts for data analysis for the easy quantification of traction stresses, which is demonstrated here using peripheral blood mononuclear cells.


Subject(s)
Leukocytes, Mononuclear , Traction , Acrylic Resins , Microscopy, Atomic Force/methods , Microscopy, Fluorescence/methods
3.
Biophys J ; 120(9): 1692-1704, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33730552

ABSTRACT

To accomplish their critical task of removing infected cells and fighting pathogens, leukocytes activate by forming specialized interfaces with other cells. The physics of this key immunological process are poorly understood, but it is important to understand them because leukocytes have been shown to react to their mechanical environment. Using an innovative micropipette rheometer, we show in three different types of leukocytes that, when stimulated by microbeads mimicking target cells, leukocytes become up to 10 times stiffer and more viscous. These mechanical changes start within seconds after contact and evolve rapidly over minutes. Remarkably, leukocyte elastic and viscous properties evolve in parallel, preserving a well-defined ratio that constitutes a mechanical signature specific to each cell type. Our results indicate that simultaneously tracking both elastic and viscous properties during an active cell process provides a new, to our knowledge, way to investigate cell mechanical processes. Our findings also suggest that dynamic immunomechanical measurements can help discriminate between leukocyte subtypes during activation.


Subject(s)
Leukocytes , Elasticity , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...