Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pigment Cell Melanoma Res ; 35(3): 303-319, 2022 05.
Article in English | MEDLINE | ID: mdl-35218154

ABSTRACT

The B-cell system plays an important role in the melanoma immune response; however, consensus has yet to be reached in many facets. Here, we comprehensively review human studies only, due to fundamental differences in the humoral response with animal models. Tumour-infiltrating B-cells are associated with contradictory prognostic values, reflecting a lack of agreement between studies on cell subset classification and differences in the markers used, particularly the common use of a single marker not differentiating multiple subsets. Tertiary lymphoid structures (TLS) organise T-cells and B-cells within tumours to generate a local anti-tumour response and TLS presence associates with improved survival in response to immune checkpoint blockade, in late-stage disease. Autoantibody production is increased in melanoma patients and has been proposed as biomarkers for diagnosis, prognosis and treatment/toxicity response; however, no consistent targets are yet identified. The function of antibodies in an anti-tumour response is determined by its isotype and subclass; IgG4 is immune-suppressive and robustly correlate with poor patient survival in melanoma. We conclude that the current B-cell literature needs careful interpretation based on the methods used and that we need a consensus of markers to define B-cells and associated lymphoid organs. Furthermore, future studies need to not only examine antibody targets, but also isotypes when considering functional roles.


Subject(s)
Melanoma , Tertiary Lymphoid Structures , Animals , Antibodies , B-Lymphocytes/pathology , Humans , Melanoma/pathology , T-Lymphocytes , Tertiary Lymphoid Structures/pathology
2.
Elife ; 102021 02 26.
Article in English | MEDLINE | ID: mdl-33646943

ABSTRACT

We performed a systematic analysis of blood DNA methylation profiles from 4483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia, and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia.


Subject(s)
DNA Methylation , Epigenome , Psychotic Disorders/physiopathology , Schizophrenia, Treatment-Resistant/physiopathology , Adult , Aged , England , Female , Humans , Ireland , Male , Middle Aged , Psychotic Disorders/genetics , Schizophrenia, Treatment-Resistant/genetics , Scotland , Sweden , Young Adult
3.
Schizophr Bull ; 44(6): 1341-1349, 2018 10 17.
Article in English | MEDLINE | ID: mdl-29373732

ABSTRACT

A recent genome-wide association (GWA) study confirmed 108 genetic loci that were strongly associated with schizophrenia. Fifteen schizophrenia-associated genes were selected for this study based on a number of selection criteria including their high expression in both brain tissues and B-lymphocyte cells. We aimed to investigate whether individuals with schizophrenia showed different levels of plasma IgG antibodies against protein-derived fragments encoded by these 15 genes. A total of 356 plasma samples were used to analyze circulating IgG antibodies against 18 target peptide antigens using an in-house enzyme-linked immunosorbent assay. Of 18 antigens tested, 6 (derived from DPYD, MAD1L1, ZNF804A, DRD2, TRANK1, and MMP16, respectively) showed increased IgG levels and 3 (derived from TSNARE1, TCF4, and VRK2, respectively) showed decreased IgG levels in patients with schizophrenia compared with control subjects. Receiver operating characteristic (ROC) curve analysis revealed that the anti-TRANK1 IgG assay had the area under the ROC curve of 0.68 (95% CI = 0.62-0.73), with the highest sensitivity of 20.7% against specificity of 95.2% among all 18 tests. There was no difference in positivity of anti-double strand DNA IgG between the patient group and the control group and no correlation between total IgG levels and each individual IgG level tested. Although risperidone treatment showed confounding effects on overall IgG levels in the circulation (combined P = .005), anti-TRANK1 IgG levels did not appear to be significantly affected (t = 1.358, P = .176). In conclusion, this study suggests that circulating anti-TRANK1 IgG is likely to serve as a biomarker for identification of a subgroup of schizophrenia.


Subject(s)
Autoantibodies/blood , Immunoglobulin G/blood , Schizophrenia/immunology , Adult , Enzyme-Linked Immunosorbent Assay , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Schizophrenia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...