Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 270: 245-254, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30219576

ABSTRACT

In this study, four agro-industrial substrates, chicken litter (CL), food waste (FW), wheat straw (WS) and hay grass (HG) were assessed as feedstock for anaerobic digestion (AD) under semi-continuous conditions at organic loading rates (OLRs) of 2.0-3.0 g TS/L.d and hydraulic retention time (HRT) of 20 days. Six different substrate mixtures were prepared such that the C/N ratio of each was 20 or more. Using principal component analysis 68.1% of data variability was explained. Biogas production from CL, as a single substrate, was 181.3 ±â€¯9.8mLN biogas/g VSadded at OLR of 2.0gTS/L.d. The optimum substrates mixture was CL:FW:WS 60:20:20, where 73.0%, 167.2% and 116.9% increase in total biogas production at OLR of 2.0, 2.5, 3.0gTS/L.d, respectively, compared to that from CL, was obtained. Digestate sequential fractionation revealed carbohydrate degradation is an important factor that can explain the variation in performance and production of biogas for feedstocks of balanced C/N ratio.


Subject(s)
Agriculture , Carbon/analysis , Food , Nitrogen/analysis , Anaerobiosis , Animals , Biofuels , Chickens , Refuse Disposal , Triticum/metabolism
2.
Environ Technol ; 39(8): 1041-1051, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28468599

ABSTRACT

Brown coal is a relatively abundant and low-cost material, which has been used as an effective ion-exchanger to remove ammonium from wastewater. In this study, the influences of pH, ammonium concentration and brown coal dose were investigated for removal of ammonium content from synthetic wastewater. Raw brown coal (RBC) treated with base solution has superior ammonium removal efficiency compared to RBC, which was due to chemical alterations and thus greater attachment of ammonium molecules to base-washed brown coal (BWBC), confirmed by Fourier transform infra-red spectroscopy. Scanning electron microscopy-electron diffraction scattering has identified the augmented sodium content in BWBC, which was subsequently replaced with nitrogen upon wastewater treatment. Crystallographic analysis showed a higher crystallinity formed in BWBC compared to RBC, which was likely due to formation of sodium salt crystals during NaOH treatment. Fitting batch experimental results to adsorption kinetic models suggested that the removal of ammonium was mainly governed by the reaction process rather than the physical diffusion mechanism. Both kinetic and isotherm studies confirmed higher adsorption capacity for BWBC compared to RBC. RBC in column mode was also experimented with to show organics removal from a secondary effluent. A comparatively lower removal of organics was obtained due to inability of charge neutralization as both brown coal and organics are positively charged.


Subject(s)
Ammonium Compounds/chemistry , Coal , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Wastewater , Water Purification
3.
Waste Manag ; 71: 663-674, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28843753

ABSTRACT

Anaerobic digestion (AD) of different agro-industrial wastes and their co-digestion potential has been exhaustively studied in this research. It explores variation of feedstock characteristics such as biodegradability and methane potential during AD and anaerobic co-digestion (ACoD) of chicken litter (CL) with yoghurt whey (YW), organic fraction of municipal solid waste (OFMSW), hay grass (HG) and wheat straw (WS) under mesophilic conditions. Comparative performance was made at different loading concentrations (2%, 3% and 4% VS) with 1:2g/g VS of substrate to inoculum and carrying C/N ratio. Among different kinetic models, the AD of single substrates showed better fit to the modified Gompertz model (R2: 0.93-0.997) indicating variation in lag phase and methane production rate depend on the substrate characteristics. During ACoD, the methane yield improved by 9-85% through the addition of two, three or four substrates due to the synergistic effect asa result of increased biodegradability and optimum conditions (such asC/N ratio). A surface (optimisation) model indicated that maximum methane production can be achieved by blending chicken litter (30-35%) and a (65-70%) mixture of yoghurt whey, hay and wheat straw with aC/N ratio of (26-27.5).


Subject(s)
Biofuels , Industrial Waste , Methane/analysis , Anaerobiosis , Animals , Bioreactors , Refuse Disposal
4.
Water Sci Technol ; 75(7-8): 1804-1811, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28452772

ABSTRACT

This work presents and explores a novel methodology for the removal and recovery of ammonia from wastewater based upon two mechanisms: electrochemical oxidation and a previously unreported electrochemically-assisted surface transfer mechanism. Recovery of ammonia is enabled by placing a porous cathodic electrode at the wastewater-air interface. In this configuration, the cathode creates local alkalinity and an electric field that draws ammonium ions towards the wastewater-air interface, resulting in near-linear reductions of dissolved ammonium irrespective of concentration. This approach leads to significant ammonia recovery without the need for ion-exchange membranes. In addition, anodic reactions that simultaneously occur at depth in the wastewater induce ammonia oxidation in accordance with proven mechanisms. The floating electrode approach offers improved ammonia removal efficiency in comparison to electrooxidation. Trials conducted on synthetic wastewater (900 mg NH4+-N l-1) and filtered anaerobic centrate (560 mg NH4+-N l-1) demonstrated ammonia concentration decreases up to 216 mg l-1 hr-1 and 110 mg l-1 hr-1, respectively, under the application of 5 mA cm-2 current density. The technology would be best used to treat municipal and industrial wastewaters possessing high ammonia concentration, including anaerobic digester centrate and urine, and offers potential to assist in removing ammonia from environmental waters.


Subject(s)
Ammonia/isolation & purification , Electrochemical Techniques/methods , Wastewater/chemistry , Ammonia/chemistry , Ammonium Compounds/chemistry , Electricity , Electrochemical Techniques/instrumentation , Electrodes , Oxidation-Reduction
5.
Water Sci Technol ; 73(12): 2936-43, 2016.
Article in English | MEDLINE | ID: mdl-27332839

ABSTRACT

Modern wastewater utilities need to be able to measure and quantify the amount of methane from their treatment facilities in order to understand the potential energy that can be produced and the amount of methane being lost. This paper describes the application of a novel sampling bailer designed for the collection of wastewater samples that minimises methane losses. Samples collected during and following anaerobic treatment from a wastewater treatment plant using a novel sampling bailer were analysed using a previously optimised analytical method. Analysis of wastewater and anaerobic pond samples using current industry approaches resulted in dissolved methane concentrations ranging from 0.01 to 14.33 mg L(-1). In comparison, the modified sampling protocol resulted in concentrations ranging from 0.08 to 18.73 mg L(-1). The relative standard deviations (RSD%) of low level spikes (5.0 mg L(-1) and 0.1 mg L(-1) methane; n = 5) were found to be 2.3 and 10.3, respectively. Statistical analysis of the dissolved methane concentrations using the two different approaches demonstrated a significant difference in the recovered dissolved methane concentrations, indicating there is a greater methane recovery potential in wastewater treatment plants than previously realised, when collected using the novel sampling bailer and analysed following the optimised analytical protocol.


Subject(s)
Methane/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis , Anaerobiosis , Waste Disposal, Fluid/instrumentation
6.
J Sci Food Agric ; 95(6): 1131-42, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25043832

ABSTRACT

Fertilisers are one of the most important elements of modern agriculture. The application of fertilisers in agricultural practices has markedly increased the production of food, feed, fuel, fibre and other plant products. However, a significant portion of nutrients applied in the field is not taken up by plants and is lost through leaching, volatilisation, nitrification, or other means. Such a loss increases the cost of fertiliser and severely pollutes the environment. To alleviate these problems, enhanced efficiency fertilisers (EEFs) are produced and used in the form of controlled release fertilisers and nitrification/urease inhibitors. The application of biopolymers for coating in EEFs, tailoring the release pattern of nutrients to closely match the growth requirement of plants and development of realistic models to predict the release pattern of common nutrients have been the foci of fertiliser research. In this context, this paper intends to review relevant aspects of new developments in fertiliser production and use, agronomic, economic and environmental drives for enhanced efficiency fertilisers and their formulation process and the nutrient release behaviour. Application of biopolymers and complex coacervation technique for nutrient encapsulation is also explored as a promising technology to produce EEFs.


Subject(s)
Agriculture , Crops, Agricultural/metabolism , Fertilizers , Biopolymers , Crops, Agricultural/growth & development
7.
Biosens Bioelectron ; 51: 330-5, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23994615

ABSTRACT

Copper ion (Cu(2+)) and L-cysteine (L-Cys) detection is critically important since an abnormal level of Cu(2+) or L-Cys is an indicator for many diseases. In this paper, we demonstrate an "off-on" approach for highly sensitive and selective detection of Cu(2+) and L-Cys using carbon dots (CDs) as fluorescent probes. CDs were prepared by using mesoporous silica (MS) spheres as nanoreactors. The binding ability of CDs towards metal ions was examined by comparing the fluorescence intensities of CDs before and after the addition of the metal ions. The addition of Cu(2+) cations leads to their absorption on the surface of CDs and the significant fluorescence quench of CDs (turn-off). The resulting in CDs-Cu(2+) system was found to be sensitive to L-Cys. The addition of L-Cys not only serves to shelter the CDs effectively from being quenched, but also to reverse the quenching and restore the fluorescence (turn-on) due to its ability to remove Cu(2+) from the surface of CDs. This method is facile, rapid, low cost, and environment-friendly. A detection limit as low as 2.3×10(-8) M for Cu(2+) and 3.4×10(-10) M for L-Cys is obtained, which is promising for biological applications.


Subject(s)
Biosensing Techniques/methods , Carbon/chemistry , Copper/analysis , Cysteine/analysis , Fluorescent Dyes/chemistry , Quantum Dots , Limit of Detection , Silicon Dioxide/chemistry , Spectrometry, Fluorescence/methods
8.
Nanoscale ; 5(22): 11200-6, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24080833

ABSTRACT

Carbon dots (CDs) have many fascinating fluorescent properties, however, their low quantum yield limits their applications. In this study, the photoluminescence (PL) of CDs in the vicinity of gold nanoparticles (Au NPs) is enhanced significantly due to the surface plasmon resonance (SPR) of the Au NPs. This is achieved by conjugating Au NPs and CDs to dendrimers (PAMAM) through an amidation reaction, resulting in the formation of the Au-PAMAM-CD conjugates. The maximum 62-fold enhancement was obtained with an optimized molar ratio between Au NPs, PAMAM, and CDs. In this process, PAMAM, which serves as a spacer, can keep Au NPs and CDs at an appropriate distance for PL enhancement. The adjustment of the amount of Au NPs or CDs linked to PAMAM can induce the optimum PL enhancement. This strategy can be easily applied to different metal-space-fluorophore systems to enhance the fluorescence of fluorophores.

9.
Microsc Microanal ; 16(1): 13-20, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20030911

ABSTRACT

Electron-beam-induced carbon film deposition has long been recognized as a side effect of scanning electron microscopy. To characterize the nature of this type of contamination, silicon wafers were subjected to prolonged exposure to 15 kV electron beam energy with a probe current of 300 pA. Using Raman spectroscopy, the deposited coating was identified as an amorphous carbon film with an estimated crystallite size of 125 A. Using atomic force microscopy, the cross-sectional profile of the coating was found to be raised and textured, indicative of the beam raster pattern. A map of the Raman intensity across the coating showed increased intensity along the edges and at the corner of the film. The intensity profile was in excess of that which could be explained by thickness alone. The enhancement was found to correspond with a modeled local field enhancement induced by the coating boundary and showed that the deposited carbon coating generated a localized disturbance in the opto-electrical properties of the substrate, which is compared and contrasted with Raman edge enhancement that is produced by surface structure in silicon.

10.
J Pharm Sci ; 94(4): 861-72, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15736196

ABSTRACT

Water sorption kinetics and water contact angles have been characterized for a range of pharmaceutical powders: ambroxol hydrochloride, griseofulvin, N,n-octyl-D-gluconamide, paracetamol, sulfathiazole, and theophylline. The uptake of water by powder samples at saturated vapor pressure was modeled using a pseudo first-order kinetic relationship. Parameters from this model have been correlated with the concentration and reactivity of the active surface sites of the pharmaceutical powders and their contact angles. The study has shown that analysis of water adsorption kinetics can be a powerful technique for characterizing the surface chemistry and wettability of pharmaceutical powders, and is particularly sensitive to their surface modification through excipient adsorption: ethyl(hydroxyethyl)cellulose treatment of griseofulvin and butyryl chloride treatment of sulfathiazole are reported as case studies.


Subject(s)
Cellulose/analogs & derivatives , Chemistry, Pharmaceutical , Powders , Adsorption , Griseofulvin/chemistry , Kinetics , Spectrophotometry, Infrared , Sulfathiazole , Sulfathiazoles/chemistry , Surface Properties , Thermodynamics , Water
11.
Int J Pharm ; 282(1-2): 189-91, 2004 Sep 10.
Article in English | MEDLINE | ID: mdl-15336394

ABSTRACT

Whilst contact angle measurements obtained using the Wilhelmy balance technique are accurate and reproducible for planar surfaces, their use for characterizing particulate materials is highly dependent upon accurate knowledge of the wet perimeter. This communication suggests that the approach of Pepin et al. [Int. J. Pharm. 152 (1997) 1] for wet perimeter determination using non-polar liquids may lead to erroneous conclusions. Alternative approaches for wet perimeter determination are suggested.


Subject(s)
Powders , Surface Properties , Algorithms , Chemical Phenomena , Chemistry, Pharmaceutical , Chemistry, Physical
12.
J Pharm Sci ; 91(6): 1432-44, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12115843

ABSTRACT

A variety of surface specific techniques have been used to determine the face-specific structure, chemistry, and wettability of model pharmaceutical crystals, i.e., N,n-octyl-d-gluconamide and sulfathiazole (polymorphic forms I and III). The surface energetics of individual crystal faces were investigated by studying their wetting characteristics and interaction with chemically modified silica spheres using colloid probe atomic force microscopy (AFM). Contact angles (dynamic and static), interaction forces, and adhesion properties have been shown to correlate strongly with the face specific surface chemistry. This, in turn, is controlled by the molecular arrangement at the specific crystal face, which has been characterized by time-of-flight secondary-ion mass spectrometry (ToF SIMS) and inferred from molecular models. Of specific note, the magnitude of the adhesion force between a crystal face and a hydrophobic colloid probe is related linearly to the face-specific equilibrium contact angle. These studies further our understanding of the face-specific properties of pharmaceutical crystals and have implications when considering processing, formulation and delivery.


Subject(s)
Gluconates/chemistry , Silicon Dioxide/chemistry , Sulfathiazoles/chemistry , Chemical Phenomena , Chemistry, Physical , Crystallization , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Sulfathiazole , Surface Properties , Wettability
13.
Int J Pharm ; 234(1-2): 43-54, 2002 Mar 02.
Article in English | MEDLINE | ID: mdl-11839436

ABSTRACT

The time-dependent wetting of sulfathiazole compacts with sessile water drops was evaluated using video microscopy. The influence of sulfathiazole crystalline form, particle size, pre-saturation with water, humidity and compaction pressure on the droplet spreading kinetics and contact angles are reported. The rate and extent of droplet spreading decreased for compact surfaces of high microscopic roughness; this was determined by atomic force microscopy (AFM). Pre-saturation of powder compacts with water (pre-saturated with sulfathiazole) enhanced droplet spreading and enabled pseudo-equilibrium contact angles to be determined for up to 10 min. Sessile-drop contact angles on both sulfathiazole powder compacts and single crystals are compared with particle contact angles determined by liquid penetration. This study has led to an improved understanding of the influence of physical heterogeneities and the face-specific surface chemistry of individual crystals on the wetting characteristics of pharmaceutical compacts.


Subject(s)
Sulfathiazoles/chemistry , Algorithms , Chemical Phenomena , Chemistry, Physical , Crystallization , Crystallography, X-Ray , Drug Compounding , Humidity , Microscopy, Atomic Force , Particle Size , Porosity , Powders , Pressure , Surface Properties , Thermogravimetry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...