Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 36(1): 501-513, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222936

ABSTRACT

Quantum spin liquids are highly entangled magnetic states with exotic properties. The S = 1/2 square-lattice Heisenberg model is one of the foundational models in frustrated magnetism with a predicted, but never observed, quantum spin liquid state. Isostructural double perovskites Sr2CuTeO6 and Sr2CuWO6 are physical realizations of this model but have distinctly different types of magnetic order and interactions due to a d10/d0 effect. Long-range magnetic order is suppressed in the solid solution Sr2CuTe1-xWxO6 in a wide region of x = 0.05-0.6, where the ground state has been proposed to be a disorder-induced spin liquid. Here, we present a comprehensive neutron scattering study of this system. We show using polarized neutron scattering that the spin liquid-like x = 0.2 and x = 0.5 samples have distinctly different local spin correlations, which suggests that they have different ground states. Low-temperature neutron diffraction measurements of the magnetically ordered W-rich samples reveal magnetic phase separation, which suggests that the previously ignored interlayer coupling between the square planes plays a role in the suppression of magnetic order at x ≈ 0.6. These results highlight the complex magnetism of Sr2CuTe1-xWxO6 and hint at a new quantum critical point between 0.2 < x < 0.4.

2.
Chem Mater ; 35(7): 2752-2761, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37063596

ABSTRACT

Ba2CuTeO6 has attracted significant attention as it contains a two-leg spin ladder of Cu2+ cations that lies in close proximity to a quantum critical point. Recently, Ba2CuTeO6 has been shown to accommodate chemical substitutions, which can significantly tune its magnetic behavior. Here, we investigate the effects of substitution for non-magnetic Zn2+ impurities at the Cu2+ site, partitioning the spin ladders. Results from bulk thermodynamic and local muon magnetic characterization on the Ba2Cu1 - x Zn x TeO6 solid solution (0 ≤ x ≤ 0.6) indicate that Zn2+ partitions the Cu2+ spin ladders into clusters and can be considered using the percolation theory. As the average cluster size decreases with increasing Zn2+ substitution, there is an evolving transition from long-range order to spin-freezing as the critical cluster size is reached between x = 0.1 to x = 0.2, beyond which the behavior became paramagnetic. This demonstrates well-controlled tuning of the magnetic disorder, which is highly topical across a range of low-dimensional Cu2+-based materials. However, in many of these cases, the chemical disorder is also relatively strong in contrast to Ba2CuTeO6 and its derivatives. Therefore, Ba2Cu1 - x Zn x TeO6 provides an ideal model system for isolating the effect of defects and segmentation in low-dimensional quantum magnets.

3.
Chem Mater ; 34(12): 5409-5421, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-36160701

ABSTRACT

Kagome networks of ferromagnetically or antiferromagnetically coupled magnetic moments represent important models in the pursuit of a diverse array of novel quantum and topological states of matter. Here, we explore a family of Cu2+-containing metal-organic frameworks (MOFs) bearing kagome layers pillared by ditopic organic linkers with the general formula Cu3(CO3)2(x)3·2ClO4 (MOF-x), where x is 1,2-bis(4-pyridyl)ethane (bpe), 1,2-bis(4-pyridyl)ethylene (bpy), or 4,4'-azopyridine (azpy). Despite more than a decade of investigation, the nature of the magnetic exchange interactions in these materials remained unclear, meaning that whether the underlying magnetic model is that of an kagome ferromagnet or antiferromagnet is unknown. Using single-crystal X-ray diffraction, we have developed a chemically intuitive crystal structure for this family of materials. Then, through a combination of magnetic susceptibility, powder neutron diffraction, and muon-spin spectroscopy measurements, we show that the magnetic ground state of this family consists of ferromagnetic kagome layers that are coupled antiferromagnetically via their extended organic pillaring linkers.

4.
Inorg Chem ; 61(9): 4033-4045, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35187928

ABSTRACT

Isovalent nonmagnetic d10 and d0 B″ cations have proven to be a powerful tool for tuning the magnetic interactions between magnetic B' cations in A2B'B″O6 double perovskites. Tuning is facilitated by the changes in orbital hybridization that favor different superexchange pathways. This can produce alternative magnetic structures when B″ is d10 or d0. Furthermore, the competition generated by introducing mixtures of d10 and d0 cations can drive the material into the realms of exotic quantum magnetism. Here, Te6+ d10 was substituted by W6+ d0 in the hexagonal perovskite Ba2CuTeO6, which possesses a spin ladder geometry of Cu2+ cations, creating a Ba2CuTe1-xWxO6 solid solution (x = 0-0.3). We find W6+ is almost exclusively substituted for Te6+ on the corner-sharing site within the spin ladder, in preference to the face-sharing site between ladders. The site-selective doping directly tunes the intraladder, Jrung and Jleg, interactions. Modeling the magnetic susceptibility data shows the d0 orbitals modify the relative intraladder interaction strength (Jrung/Jleg) so the system changes from a spin ladder to isolated spin chains as W6+ increases. This further demonstrates the utility of d10 and d0 dopants as a tool for tuning magnetic interactions in a wide range of perovskites and perovskite-derived structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...