Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 22164, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092761

ABSTRACT

Epithelial cells undergoing EMT experience significant alterations at transcriptional and morphological levels. However, changes in the cytoskeleton, especially cytoskeleton dynamics are poorly described. Addressing the question we induced EMT in three cell lines (MCF-7, HaCaT and A-549) and analyzed morphological and cytoskeletal changes there using immunostaining and life cell imaging of cells transfected with microtubule and focal adhesion markers. In all studied cell lines, cell area after EMT increased, MCF-7 and A-549 cells became elongated, while HaCaT cells kept the aspect ratio the same. We next analyzed three components of the cytoskeleton: microtubules, stress fibers and focal adhesions. The following changes were observed after EMT in cultured cells: (i) Organization of microtubules becomes more radial; and the growth rate of microtubule plus ends was accelerated; (ii) Actin stress fibers become co-aligned forming the longitudinal cell axis; and (iii) Focal adhesions had decreased area in all cancer cell lines studied and became more numerous in HaCaT cells. We conclude that among dynamic components of the cytoskeleton, the most significant changes during EMT happen in the regulation of microtubules.


Subject(s)
Cytoskeleton , Microtubules , Cell Adhesion/physiology , Cytoskeleton/metabolism , Microtubules/metabolism , Actins/metabolism , Focal Adhesions/metabolism , Actin Cytoskeleton/metabolism
2.
Proc Natl Acad Sci U S A ; 119(46): e2208294119, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36343235

ABSTRACT

Microtubules are essential cytoskeletal polymers that exhibit stochastic switches between tubulin assembly and disassembly. Here, we examine possible mechanisms for these switches, called catastrophes and rescues. We formulate a four-state Monte Carlo model, explicitly considering two biochemical and two conformational states of tubulin, based on a recently conceived view of microtubule assembly with flared ends. The model predicts that high activation energy barriers for lateral tubulin interactions can cause lagging of curled protofilaments, leading to a ragged appearance of the growing tip. Changes in the extent of tip raggedness explain some important but poorly understood features of microtubule catastrophe: weak dependence on tubulin concentration and an increase in its probability over time, known as aging. The model predicts a vanishingly rare frequency of spontaneous rescue unless patches of guanosine triphosphate tubulin are artificially embedded into microtubule lattice. To test our model, we used in vitro reconstitution, designed to minimize artifacts induced by microtubule interaction with nearby surfaces. Microtubules were assembled from seeds overhanging from microfabricated pedestals and thus well separated from the coverslip. This geometry reduced the rescue frequency and the incorporation of tubulins into the microtubule shaft compared with the conventional assay, producing data consistent with the model. Moreover, the rescue positions of microtubules nucleated from coverslip-immobilized seeds displayed a nonexponential distribution, confirming that coverslips can affect microtubule dynamics. Overall, our study establishes a unified theory accounting for microtubule assembly with flared ends, a tip structure-dependent catastrophe frequency, and a microtubule rescue frequency dependent on lattice damage and repair.


Subject(s)
Microtubules , Tubulin , Tubulin/metabolism , Microtubules/metabolism , Guanosine Triphosphate/metabolism , Monte Carlo Method
3.
Biophys J ; 114(11): 2640-2652, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29874614

ABSTRACT

Coiled-coil stalks of various kinesins differ significantly in predicted length and structure; this is an adaption that helps these motors carry out their specialized functions. However, little is known about the dynamic stalk configuration in moving motors. To gain insight into the conformational properties of the transporting motors, we developed a theoretical model to predict Brownian motion of a microbead tethered to the tail of a single, freely walking molecule. This approach, which we call the tethered cargo motion (TCM) assay, provides an accurate measure of the mechanical properties of motor-cargo tethering, verified using kinesin-1 conjugated to a microbead via DNA links in vitro. Applying the TCM assay to the mitotic kinesin CENP-E unexpectedly revealed that when walking along a microtubule track, this highly elongated molecule with a contour length of 230 nm formed a 20-nm-long tether. The stalk of a walking CENP-E could not be extended fully by application of sideways force with optical tweezers (up to 4 pN), implying that CENP-E carries its cargo in a compact configuration. Assisting force applied along the microtubule track accelerates CENP-E walking, but this increase does not depend on the presence of the CENP-E stalk. Our results suggest that the unusually large stalk of CENP-E has little role in regulating its function as a transporter. The adjustable stalk configuration may represent a regulatory mechanism for controlling the physical reach between kinetochore-bound CENP-E and spindle microtubules, or it may assist localizing various kinetochore regulators in the immediate vicinity of the kinetochore-embedded microtubule ends. The TCM assay and underlying theoretical framework will provide a general guide for determining the dynamic configurations of various molecular motors moving along their tracks, freely or under force.


Subject(s)
Kinesins/metabolism , Mitosis , Movement , Optical Tweezers , Biomechanical Phenomena , Chromosome Segregation
SELECTION OF CITATIONS
SEARCH DETAIL
...