Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CPT Pharmacometrics Syst Pharmacol ; 6(7): 418-429, 2017 07.
Article in English | MEDLINE | ID: mdl-28722322

ABSTRACT

Inadequate dose selection for confirmatory trials is currently still one of the most challenging issues in drug development, as illustrated by high rates of late-stage attritions in clinical development and postmarketing commitments required by regulatory institutions. In an effort to shift the current paradigm in dose and regimen selection and highlight the availability and usefulness of well-established and regulatory-acceptable methods, the European Medicines Agency (EMA) in collaboration with the European Federation of Pharmaceutical Industries Association (EFPIA) hosted a multistakeholder workshop on dose finding (London 4-5 December 2014). Some methodologies that could constitute a toolkit for drug developers and regulators were presented. These methods are described in the present report: they include five advanced methods for data analysis (empirical regression models, pharmacometrics models, quantitative systems pharmacology models, MCP-Mod, and model averaging) and three methods for study design optimization (Fisher information matrix (FIM)-based methods, clinical trial simulations, and adaptive studies). Pairwise comparisons were also discussed during the workshop; however, mostly for historical reasons. This paper discusses the added value and limitations of these methods as well as challenges for their implementation. Some applications in different therapeutic areas are also summarized, in line with the discussions at the workshop. There was agreement at the workshop on the fact that selection of dose for phase III is an estimation problem and should not be addressed via hypothesis testing. Dose selection for phase III trials should be informed by well-designed dose-finding studies; however, the specific choice of method(s) will depend on several aspects and it is not possible to recommend a generalized decision tree. There are many valuable methods available, the methods are not mutually exclusive, and they should be used in conjunction to ensure a scientifically rigorous understanding of the dosing rationale.


Subject(s)
Dose-Response Relationship, Drug , Drug Discovery , Models, Theoretical , Animals , Clinical Trials as Topic , Humans , Pharmaceutical Preparations/administration & dosage , Research Design
2.
Pharm Res ; 32(2): 617-27, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25231008

ABSTRACT

PURPOSE: Drug development in chronic obstructive pulmonary disease (COPD) has been characterised by unacceptably high failure rates. In addition to the poor sensitivity in forced expiratory volume in one second (FEV1), numerous causes are known to contribute to this phenomenon, which can be clustered into drug-, disease- and design-related factors. Here we present a model-based approach to describe disease progression, treatment response and dropout in clinical trials with COPD patients. METHODS: Data from six phase II trials lasting up to 6 months were used. Disease progression (trough FEV1 measurements) was modelled by a time-varying function, whilst the treatment effect was described by an indirect response model. A time-to-event model was used for dropout RESULTS: All relevant parameters were characterised with acceptable precision. Two parameters were necessary to model the dropout patterns, which was found to be partly linked to the treatment failure. Disease severity at baseline, previous use of corticosteroids, gender and height were significant covariates on disease baseline whereas disease severity and reversibility to salbutamol/salmeterol were significant covariates on Emax for salmeterol active arm. CONCLUSION: Incorporation of the various interacting factors into a single model will offer the basis for patient enrichment and improved dose rationale in COPD.


Subject(s)
Disease Progression , Patient Dropouts , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Adult , Aged , Aged, 80 and over , Female , Forced Expiratory Volume/physiology , Humans , Male , Middle Aged , Predictive Value of Tests , Pulmonary Disease, Chronic Obstructive/epidemiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...