Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7582, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217149

ABSTRACT

Free-electron-lasers fill a critical gap in the space of THz-sources as they can reach high average and peak powers with spectral tunability. Using a waveguide in a THz FEL significantly increases the coupling between the relativistic electrons and electromagnetic field enabling large amounts of radiation to be generated in a single passage of electrons through the undulator. In addition to transversely confining the radiation, the dispersive properties of the waveguide critically affect the velocity and slippage of the radiation pulse which determine the central frequency and bandwidth of the generated radiation. In this paper, we characterize the spectral properties of a compact waveguide THz FEL including simultaneous lasing at two different frequencies and demonstrating tuning of the radiation wavelength in the high frequency branch by varying the beam energy and ensuring that the electrons injected into the undulator are prebunched on the scale of the resonant radiation wavelength.

2.
Struct Dyn ; 11(2): 024303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532925

ABSTRACT

The temporal resolution of ultrafast electron diffraction at weakly relativistic beam energies (≲100 keV) suffers from space-charge induced electron pulse broadening. We describe the implementation of a radio frequency (RF) cavity operating in the continuous wave regime to compress high repetition rate electron bunches from a 40.4 kV DC photoinjector for ultrafast electron diffraction applications. Active stabilization of the RF amplitude and phase through a feedback loop based on the demodulated in-phase and quadrature components of the RF signal is demonstrated. This scheme yields 144 ± 19 fs RMS temporal resolution in pump-probe studies.

3.
Struct Dyn ; 4(4): 044032, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28713841

ABSTRACT

Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

4.
Phys Rev Lett ; 118(15): 154802, 2017 Apr 14.
Article in English | MEDLINE | ID: mdl-28452517

ABSTRACT

Ultralow emittance (≤20 nm, normalized) electron beams with 10^{5} electrons per bunch are obtained by tightly focusing an ultrafast (∼100 fs) laser pulse on the cathode of a 1.6 cell radio frequency photoinjector. Taking advantage of the small initial longitudinal emittance, a downstream velocity bunching cavity is used to compress the beam to <10 fs rms bunch length. The measurement is performed using a thick high-voltage deflecting cavity which is shown to be well suited to measure ultrashort durations of bunching beams, provided that the beam reaches a ballistic longitudinal focus at the cavity center.

SELECTION OF CITATIONS
SEARCH DETAIL