Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Adv Radiat Oncol ; 9(4): 101398, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38778822

ABSTRACT

Purpose: Radiation therapy for early-stage breast cancer is typically delivered in a hypofractionated regimen to the whole breast followed by a tumor bed boost. This results in a treatment course of approximately 4 weeks. In this study, the tumor bed boost was delivered in a single fraction as part of a safety and feasibility study for FDA clearance of the device. Methods and Materials: Eligible women with early-stage breast cancer underwent lumpectomy followed by radiation therapy. Patients underwent breast immobilization using a system specific to the GammaPod followed by CT simulation, boost treatment planning, and boost treatment delivery all in a single treatment day. Patients then started whole-breast radiation therapy within 1 week of the boost treatment. Patients and treatments were assessed for safety and feasibility. Acute toxicities were recorded. Results: A single-fraction boost of 8 Gy was delivered to the tumor bed before a course of whole-breast radiation. The GammaPod treatment was successfully delivered to 14 of 17 enrolled patients. Acute toxicities from all radiation therapy, inclusive of the boost and whole-breast radiation, were limited to grade 1 events. Conclusions: The GammaPod device successfully delivered a single-fraction boost treatment to the tumor bed with no change in expected acute toxicities. The results of this study led to FDA clearance of the device through the Investigational Device Exemption process at the FDA. The GammaPod is in clinical use at 4e institutions nationally and internationally, with additional sites pending in 2023.

2.
J Appl Clin Med Phys ; 24(11): e14108, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37528683

ABSTRACT

PURPOSE: The purpose of this study was to investigate the impact of using flattening filter-free (FFF) beams and the aperture shape controller (ASC) on the complexity of conventional large-field treatment plans. METHODS AND MATERIALS: A total of 24 head and neck (H&N) and 24 prostate with pelvic nodes treatment plans were used in this study. Each plan was reoptimized using the original clinical objectives with both flattened and FFF beams, as well as six different ASC settings. The dosimetric qualities of each plan cohort were evaluated using commonly used dose-volume histogram values, and plan complexities were assessed through metrics including monitor unit (MU)/Dose, change in gantry speed, multileaf collimator (MLC) speed, the edge area ratio metric (EM), and the equivalent square length. RESULTS: No significant differences in dosimetric qualities were found between plans with flattened and FFF beams. The ASC settings did not have significant effects on dosimetric qualities in the H&N plan cohort, but the "very high" ASC setting resulted in poorer dosimetric results for the prostate plans. Plans with FFF beams had significantly higher MU/Dose compared to plans with flattened beams. The use of flattening filter (FF) had significant effects on the change in gantry speed, with flattened beams producing plans that required higher change in gantry speed. However, the FF did not have significant effects on MLC speed, EM, or equivalent square length. In contrast, ASC settings had significant effects on these three metrics; increasing the ASC level resulted in plans with decreasing MLC speed, lower edge area ratio, and higher equivalent square length. CONCLUSION: This study demonstrated that using FFF beams with various ASC settings, except for the "very high" level, can produce plans with reduced complexities without compromising dosimetric qualities in conventional large-field treatment plans.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiometry/methods , Radiotherapy Dosage , Radiosurgery/methods
3.
J Appl Clin Med Phys ; 22(3): 8-15, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33656237

ABSTRACT

A novel, breast-specific stereotactic radiotherapy device has been developed for delivery of highly conformal, accelerated partial breast irradiation. This device employs a unique, vacuum-assisted, breast cup immobilization system that applies a gentle, negative pressure to the target breast with the patient in the prone position. A device-specific patient loader is utilized for simulation scanning and device docking. Prior to clinical activation, a prospective protocol enrolled 25 patients who had been or were to be treated with breast conservation surgery and adjuvant radiotherapy for localized breast cancer. The patients underwent breast cup placement and two separate CT simulation scans. Surgical clips within the breast were mapped and positions measured against the device's integrated stereotactic fiducial/coordinate system to confirm reproducible and durable immobilization during the simulation, treatment planning, and delivery process for the device. Of the enrolled 25 patients, 16 were deemed eligible for analysis. Seventy-three clips (median, 4; mean, 4.6; range, 1-8 per patient) were mapped in these selected patients on both the first and second CT scans. X, Y, and Z coordinates were determined for the center point of each clip. Length of vector change in position was determined for each clip between the two scans. The mean displacement of implanted clips was 1.90 mm (median, 1.47 mm; range, 0.44-6.52 mm) (95% CI, 1.6-2.20 mm). Additional analyses stratified clips by position within the breast and depth into the immobilization cup. Overall, this effort validated the clinically utilized 3-mm planning target volume margin for accurate, reliable, and precise employment of the device.


Subject(s)
Breast Neoplasms , Radiosurgery , Breast , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Female , Humans , Immobilization , Prospective Studies , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results
4.
Med Phys ; 47(8): 3614-3620, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32330300

ABSTRACT

PURPOSE: The GammaPod is a novel dedicated prone breast stereotactic radiosurgery (SRS) device recently developed at the University of Maryland Medical Center. This device utilizes multiple rotating Co-60 sources to create highly conformal dose distributions for breast treatments, including boosts, partial breast irradiation, or presurgery SRS. However, due to its small field sizes and nonstandard geometry, existing calibration protocols cannot be directly applied. In this study, we adapt and implement the American Association of Physicists in Medicine Task Group 21 (TG-21) and International Atomic Energy Agency (IAEA) Technical Report Series 483 (TRS 483) protocols for reference dose measurements for the GammaPod. This represents the first published dosimetric investigation GammaPod and is meant to serve as a reference to future users commissioning and calibrating these devices. METHODS: Reference dose measurements were performed following the TG-21/IAEA TRS 483 protocols using an ADCL-calibrated Exradin A1SL thimble chamber in a polymethyl methacrylate (PMMA) breast-mimicking phantom. Monte Carlo calculations and measurements were also performed in water to determine chamber-specific k PMMA Q m s r , Q 0 f msr , f ref quality conversion factor converting reference field size (fref ) to machine-specific field sizes (fmsr ) (25-mm) as well as k PMMA f clin , f msr , the conversion factor from the (fmsr ) to the clinical field size (fclin ) (15mm). Verification was performed using the thermoluminescent dosimeter remote monitoring service from the Imaging and Radiation Oncology Core (IROC) in Houston, TX. RESULTS: The (fref ) to (fmsr ) chamber-specific factor k PMMA Q m s r , Q 0 f msr , f ref was 0.992 while the (fmsr ) to (fclin ) chamber-specific k PMMA f clin , f msr factor was 1.014. The radiation absorbed dose to water measured in the PMMA phantom based on the TG-21/IAEA TRS 483 formalism agreed with IROC values to within 1% and 2% for the 25- and 15-mm collimators, respectively. CONCLUSION: We successfully implemented the TG-21 and TRS 483 reference dosimetry protocols for the GammaPod. These results show agreement between measurements performed with different reference dosimetry protocols and independent thermoluminescent measurements.


Subject(s)
Nuclear Energy , Radiosurgery , Calibration , Monte Carlo Method , Radiometry
5.
J Appl Clin Med Phys ; 20(12): 138-148, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31833640

ABSTRACT

PURPOSE: The GammaPod is a dedicated prone breast stereotactic radiosurgery (SRS) machine composed of 25 cobalt-60 sources which rotate around the breast to create highly conformal dose distributions for boosts, partial-breast irradiation, or neo-adjuvant SRS. We describe the development and validation of a patient-specific quality assurance (PSQA) system for the GammaPod. METHODS: We present two PSQA methods: measurement based and calculation based PSQA. The measurements are performed with a combination of absolute and relative dose measurements. Absolute dosimetry is performed in a single point using a 0.053-cc pinpoint ionization chamber in the center of a polymethylmethacrylate (PMMA) breast phantom and a water-filled breast cup. Relative dose distributions are verified with EBT3 film in the PMMA phantom. The calculation-based method verifies point doses with a novel semi-empirical independent-calculation software. RESULTS: The average (± standard deviation) breast and target sizes were 1263 ± 335.3 cc and 66.9 ± 29.9 cc, respectively. All ion chamber measurements performed in water and the PMMA phantom agreed with the treatment planning system (TPS) within 2.7%, with average (max) difference of -1.3% (-1.9%) and -1.3% (-2.7%), respectively. Relative dose distributions measured by film showed an average gamma pass rate of 97.0 ± 3.2 when using a 3%/1 mm criteria. The lowest gamma analysis pass rate was 90.0%. The independent calculation software had average agreements (max) with the patient and QA plan calculation of 0.2% (2.2%) and -0.1% (2.0%), respectively. CONCLUSION: We successfully implemented the first GammaPod PSQA program. These results show that the GammaPod can be used to calculate and deliver the predicted dose precisely and accurately. For routine PSQA performed prior to treatments, the independent calculation is recommended as it verifies the accuracy of the planned dose without increasing the risk of losing vacuum due to prolonged waiting times.


Subject(s)
Breast Neoplasms/surgery , Phantoms, Imaging , Quality Assurance, Health Care/standards , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Breast Neoplasms/pathology , Calibration , Female , Film Dosimetry , Humans , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Software
6.
Technol Cancer Res Treat ; 16(6): 1031-1037, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28705082

ABSTRACT

Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose (Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced (P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.

7.
J Appl Clin Med Phys ; 18(5): 64-69, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28703475

ABSTRACT

PURPOSE: (a) To investigate the accuracy of cone-beam computed tomography (CBCT)-derived dose distributions relative to fanbeam-based simulation CT-derived dose distributions; and (b) to study the feasibility of CBCT dosimetry for guiding the appropriateness of replanning. METHODS AND MATERIALS: Image data corresponding to 40 patients (10 head and neck [HN], 10 lung, 10 pancreas, 10 pelvis) who underwent radiation therapy were randomly selected. Each patient had both intensity-modulated radiation therapy and volumetric-modulated arc therapy plans; these 80 plans were subsequently recomputed on the CBCT images using a patient-specific stepwise curve (Hounsfield units-to-density). Planning target volumes (PTVs; D98%, D95%, D2%), mean dose, and V95% were compared between simulation-CT-derived treatment plans and CBCT-based plans. Gamma analyses were performed using criterion of 3%/3 mm for three dose zones (>90%, 70%~90%, and 30%~70% of maximum dose). CBCT-derived doses were then used to evaluate the appropriateness of replanning decisions in 12 additional HN patients whose plans were previously revised during radiation therapy because of anatomic changes; replanning in these cases was guided by the conventional observed source-to-skin-distance change-derived approach. RESULTS: For all disease sites, the difference in PTV mean dose was 0.1% ± 1.1%, D2% was 0.7% ± 0.1%, D95% was 0.2% ± 1.1%, D98% was 0.2% ± 1.0%, and V95% was 0.3% ± 0.8%; For 3D dose comparison, 99.0% ± 1.9%, 97.6% ± 4.4%, and 95.3% ± 6.0% of points passed the 3%/3 mm criterion of gamma analysis in high-, medium-, and low-dose zones, respectively. The CBCT images achieved comparable dose distributions. In the 12 previously replanned 12 HN patients, CBCT-based dose predicted well changes in PTV D2% (Pearson linear correlation coefficient = 0.93; P < 0.001). If 3% of change is used as the replanning criteria, 7/12 patients could avoid replanning. CONCLUSIONS: CBCT-based dose calculations produced accuracy comparable to that of simulation CT. CBCT-based dosimetry can guide the decision to replan during the course of treatment.


Subject(s)
Cone-Beam Computed Tomography , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/methods , Feasibility Studies , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Neoplasms/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Pelvic Neoplasms/diagnostic imaging , Pelvic Neoplasms/radiotherapy , Physics , Radiotherapy Dosage , Retrospective Studies , Time Factors
8.
Oncology ; 92(1): 21-30, 2017.
Article in English | MEDLINE | ID: mdl-27898429

ABSTRACT

OBJECTIVE: Partial-breast irradiation (PBI) with external-beam radiotherapy has produced higher than expected rates of fair-to-poor cosmesis. Worsened outcomes have been correlated with larger volumes of breast tissue exposed to radiation. A novel breast-specific stereotactic radiotherapy (BSRT) device (BSRTD) has been developed at our institution and has shown promise in delivering highly conformal dose distributions. We compared normal tissue sparing with this device with that achieved with intensity-modulated radiation therapy (IMRT)-PBI. METHODS: Fifteen women previously treated with breast conservation therapy were enrolled on an institutional review board-approved protocol. Each of them underwent CT simulation in the prone position using the BSRTD-specific immobilization system. Simulated postoperative and preoperative treatment volumes were generated based on surgical bed/clip position. Blinded planners generated IMRT-PBI plans and BSRT plans for each set of volumes. These plans were compared based on clinically validated markers for cosmetic outcome and toxicity using a Wilcoxon rank-sum test. RESULTS: The BSRT plans consistently reduced the volumes receiving each of several dose levels (Vx) to breast tissue, the chest wall, the lung, the heart, and the skin in both preoperative and postoperative settings (p < 0.05). Preoperative BSRT yielded particularly dramatic improvements. CONCLUSION: The novel BSRTD has demonstrated significant dosimetric benefits over IMRT-PBI. Further investigation is currently proceeding through initial clinical trials.


Subject(s)
Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Radiosurgery/methods , Radiotherapy, Intensity-Modulated/methods , Female , Humans , Mastectomy, Segmental/instrumentation , Mastectomy, Segmental/methods , Preoperative Care/instrumentation , Preoperative Care/methods , Radiosurgery/instrumentation , Radiotherapy Planning, Computer-Assisted/methods
9.
Phys Med Biol ; 58(13): 4409-21, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23743718

ABSTRACT

The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally located targets with an acceptable dose fall-off and lower relative skin dose than the brachytherapy techniques considered in this study.


Subject(s)
Brachytherapy/instrumentation , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Mastectomy/instrumentation , Radiosurgery/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Dose Fractionation, Radiation , Equipment Design , Equipment Failure Analysis , Female , Humans , Treatment Outcome
10.
Med Phys ; 40(4): 041722, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23556892

ABSTRACT

PURPOSE: A dedicated stereotactic gamma irradiation device, the GammaPod™ from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. METHODS: The GammaPod™ stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 (60)Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60° intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. RESULTS: Loaded with 36 (60)Co sources with cumulative activity of 4320 Ci, the prototype GammaPod™ unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod™ device is found to deliver uniform doses to targets with good conformity. The spatial accuracy of the device to locate the radiation isocenter is determined to be less than 1 mm. Single shot profiles with 2.5 cm collimator are measured with radiochromic film and found to be in good agreement with respect to the Monte Carlo based calculations (congruence of FWHM less than 1 mm). Dosimetric verifications corresponding to all hypothetical treatment plans corresponding to three target scenarios for each of the seven patients demonstrated good agreement with gamma index pass rates of better than 97% (99.0% ± 0.7%). CONCLUSIONS: Dosimetric evaluation of the first GammaPod™ stereotactic breast radiotherapy unit was performed and the dosimetric and spatial accuracy of this novel technology is found to be feasible with respect to clinical radiotherapy standards. The observed level of agreement between the treatment planning system calculations and dosimetric measurements has confirmed that the system can deliver highly complex treatment plans with remarkable geometric and dosimetric accuracy.


Subject(s)
Breast Neoplasms/surgery , Organ Sparing Treatments/instrumentation , Radiometry/methods , Radiosurgery/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Dose Fractionation, Radiation , Equipment Design , Equipment Failure Analysis , Humans , Radiosurgery/methods , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
11.
J Appl Clin Med Phys ; 9(4): 172-180, 2008 Oct 29.
Article in English | MEDLINE | ID: mdl-19020488

ABSTRACT

The accuracy of four-dimensional computed tomography (4DCT) imaging depends on temporal characteristics of the acquisition protocol--for example, the temporal spacing of the reconstructed images (also known as cine duration between images) and the gantry rotation speed. These parameters affect the temporal resolution of 4DCT images, and a single default acquisition protocol, as commonly used in most clinics, may be suboptimal for a subset of respiratory motion characteristics. It could lead to substantial inaccuracies in target delineation. The aim of the present study was to evaluate the interplay between parameters affecting temporal resolution and the accuracy of the resulting images. We acquired 4DCT images of cylindrical phantoms under repetitive motion induced by a translation platform. Acquisition settings varied with respect to temporal spacing, gantry rotation speed, and motion period of the phantoms. Reconstructed images were sorted into 10 phase bins and were compared to static phantom images acquired at corresponding positions of the respiration phase. Acquisitions with different temporal spacing did not play a significant role in the amount of motion observed in full-cycle maximum intensity projection images. Target delineation accuracy at end-of-inhalation phase was observed to be constant up to a threshold in the value of the reconstruction interval, beyond which it varied arbitrarily. This threshold was found to be correlated with the number of phase bins and the motion period. No observable variations were noted with images from the end of exhalation when temporal spacing was varied. Target delineation accuracy was observed to be enhanced in acquisitions using faster gantry rotation speeds. An evaluation of the acquisition parameters needs to be performed depending on the period of the motion and limiting factors such as the availability of acquisition settings, X-ray tube workload, image storage, and processing power.


Subject(s)
Tomography, X-Ray Computed/instrumentation , Algorithms , Equipment Design , Humans , Image Processing, Computer-Assisted/methods , Movement , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted , Radiotherapy, Computer-Assisted/methods , Reproducibility of Results , Respiration , Software , Time Factors , Tomography, X-Ray Computed/methods , X-Rays
12.
Int J Radiat Oncol Biol Phys ; 70(5): 1561-70, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18374230

ABSTRACT

PURPOSE: Use of internal margins to account for respiratory motion of the target volumes is a common strategy in radiotherapy of mobile tumors. Although efficient for tumor coverage, this expansion also risks increased toxicity to nearby healthy organs and therefore requires a careful selection of appropriate margins. In this study, we demonstrate an optimization of the internal margin used to account for respiration motion. METHODS AND MATERIALS: Three-dimensional conformal treatment plans for phantom spherical target volumes as well as clinical treatment plans of 11 patients were evaluated retrospectively for optimum internal margin selection. A software-based simulation of respiration motion was performed for all cases. Moreover, the interplay with treatment setup uncertainties and corresponding margins was investigated in the phantom study. RESULTS: Optimum internal margins in both phantom and patient studies were found to be substantially smaller than the actual target displacement due to respiration. The optimal internal margin was also observed to be approximately independent of the setup margins. Furthermore, no statistically significant dependence on target size and shape was observed in the group of 11 patients. CONCLUSIONS: These findings present significant implications for treatment planning of mobile targets, such as tumors found in the lung and upper abdomen. We conclude that the full motion amplitude for the internal margin is overly conservative, and optimization of the internal margin provides improved sparing of nearby organs at risk without sacrificing dosimetric coverage for the target.


Subject(s)
Abdominal Neoplasms/radiotherapy , Computer Simulation , Lung Neoplasms/radiotherapy , Movement , Radiotherapy, Conformal/standards , Abdominal Neoplasms/pathology , Algorithms , Humans , Lung Neoplasms/pathology , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Conformal/methods , Retrospective Studies , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...