Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Front Hum Neurosci ; 18: 1324958, 2024.
Article in English | MEDLINE | ID: mdl-38784523

ABSTRACT

Introduction: The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows researchers to explore cortico-cortical connections. To study effective connections, the first few tens of milliseconds of the TMS-evoked potentials are the most critical. Yet, TMS-evoked artifacts complicate the interpretation of early-latency data. Data-processing strategies like independent component analysis (ICA) and the combined signal-space projection-source-informed reconstruction approach (SSP-SIR) are designed to mitigate artifacts, but their objective assessment is challenging because the true neuronal EEG responses under large-amplitude artifacts are generally unknown. Through simulations, we quantified how the spatiotemporal properties of the artifacts affect the cleaning performances of ICA and SSP-SIR. Methods: We simulated TMS-induced muscle artifacts and superposed them on pre-processed TMS-EEG data, serving as the ground truth. The simulated muscle artifacts were varied both in terms of their topography and temporal profiles. The signals were then cleaned using ICA and SSP-SIR, and subsequent comparisons were made with the ground truth data. Results: ICA performed better when the artifact time courses were highly variable across the trials, whereas the effectiveness of SSP-SIR depended on the congruence between the artifact and neuronal topographies, with the performance of SSP-SIR being better when difference between topographies was larger. Overall, SSP-SIR performed better than ICA across the tested conditions. Based on these simulations, SSP-SIR appears to be more effective in suppressing TMS-evoked muscle artifacts. These artifacts are shown to be highly time-locked to the TMS pulse and manifest in topographies that differ substantially from the patterns of neuronal potentials. Discussion: Selecting between ICA and SSP-SIR should be guided by the characteristics of the artifacts. SSP-SIR might be better equipped for suppressing time-locked artifacts, provided that their topographies are sufficiently different from the neuronal potential patterns of interest, and that the SSP-SIR algorithm can successfully find those artifact topographies from the high-pass-filtered data. ICA remains a powerful tool for rejecting artifacts that are not strongly time locked to the TMS pulse.

2.
Brain Topogr ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598019

ABSTRACT

Electroencephalogram (EEG) recorded as response to transcranial magnetic stimulation (TMS) can be highly informative of cortical reactivity and connectivity. Reliable EEG interpretation requires artifact removal as the TMS-evoked EEG can contain high-amplitude artifacts. Several methods have been proposed to uncover clean neuronal EEG responses. In practice, determining which method to select for different types of artifacts is often difficult. Here, we used a unified data cleaning framework based on beamforming to improve the algorithm selection and adaptation to the recorded signals. Beamforming properties are well understood, so they can be used to yield customized methods for EEG cleaning based on prior knowledge of the artifacts and the data. The beamforming implementations also cover, but are not limited to, the popular TMS-EEG cleaning methods: independent component analysis (ICA), signal-space projection (SSP), signal-space-projection-source-informed-reconstruction method (SSP-SIR), the source-estimate-utilizing noise-discarding algorithm (SOUND), data-driven Wiener filter (DDWiener), and the multiple-source approach. In addition to these established methods, beamforming provides a flexible way to derive novel artifact suppression algorithms by considering the properties of the recorded data. With simulated and measured TMS-EEG data, we show how to adapt the beamforming-based cleaning to different data and artifact types, namely TMS-evoked muscle artifacts, ocular artifacts, TMS-related peripheral responses, and channel noise. Importantly, beamforming implementations are fast to execute: We demonstrate how the SOUND algorithm becomes orders of magnitudes faster via beamforming. Overall, the beamforming-based spatial filtering framework can greatly enhance the selection, adaptability, and speed of EEG artifact removal.

5.
Neuroimage ; 284: 120427, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38008297

ABSTRACT

We tested previous post-hoc findings indicating a relationship between functional connectivity (FC) in the motor network and corticospinal excitability (CsE), in a real-time EEG-TMS experiment in healthy participants. We hypothesized that high FC between left and right motor cortex predicts high CsE. FC was quantified in real-time by single-trial phase-locking value (stPLV), and TMS single pulses were delivered based on the current FC. CsE was indexed by motor-evoked potential (MEP) amplitude in a hand muscle. Possible confounding factors (pre-stimulus µ-power and phase, interstimulus interval) were evaluated post hoc. MEPs were significantly larger during high FC compared to low FC. Post hoc analysis revealed that the FC condition showed a significant interaction with µ-power in the stimulated hemisphere. Further, inter-stimulus interval (ISI) interacted with high vs. low FC conditions. In summary, FC was confirmed to be predictive of CsE, but should not be considered in isolation from µ-power and ISI. Moreover, FC was complementary to µ-phase in predicting CsE. Motor network FC is another marker of real-time accessible CsE beyond previously established markers, in particular phase and power of the µ rhythm, and may help define a more robust composite biomarker of high/low excitability states of human motor cortex.


Subject(s)
Motor Cortex , Humans , Motor Cortex/physiology , Electroencephalography , Transcranial Magnetic Stimulation , Muscle, Skeletal/physiology , Evoked Potentials, Motor/physiology
6.
Curr Biol ; 33(12): 2548-2556.e6, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37269827

ABSTRACT

Once formed, the fate of memory is uncertain. Subsequent offline interactions between even different memory types (actions versus words) modify retention.1,2,3,4,5,6 These interactions may occur due to different oscillations functionally linking together different memory types within a circuit.7,8,9,10,11,12,13 With memory processing driving the circuit, it may become less susceptible to external influences.14 We tested this prediction by perturbing the human brain with single pulses of transcranial magnetic stimulation (TMS) and simultaneously measuring the brain activity changes with electroencephalography (EEG15,16,17). Stimulation was applied over brain areas that contribute to memory processing (dorsolateral prefrontal cortex, DLPFC; primary motor cortex, M1) at baseline and offline, after memory formation, when memory interactions are known to occur.1,4,6,10,18 The EEG response decreased offline (compared with baseline) within the alpha/beta frequency bands when stimulation was applied to the DLPFC, but not to M1. This decrease exclusively followed memory tasks that interact, revealing that it was due specifically to the interaction, not task performance. It remained even when the order of the memory tasks was changed and so was present, regardless of how the memory interaction was produced. Finally, the decrease within alpha power (but not beta) was correlated with impairment in motor memory, whereas the decrease in beta power (but not alpha) was correlated with impairment in word-list memory. Thus, different memory types are linked to different frequency bands within a DLPFC circuit, and the power of these bands shapes the balance between interaction and segregation between these memories.


Subject(s)
Electroencephalography , Prefrontal Cortex , Humans , Prefrontal Cortex/physiology , Transcranial Magnetic Stimulation , Memory/physiology , Brain
7.
Brain Sci ; 13(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36831776

ABSTRACT

Stroke is a major cause of disability because of its motor and cognitive sequelae even when the acute phase of stabilization of vital parameters is overcome. The most important improvements occur in the first 8-12 weeks after stroke, indicating that it is crucial to improve our understanding of the dynamics of phenomena occurring in this time window to prospectively target rehabilitation procedures from the earliest stages after the event. Here, we studied the intracortical excitability properties of delivering transcranial magnetic stimulation (TMS) to the primary motor cortex (M1) of left and right hemispheres in 17 stroke patients who suffered a mono-lateral left hemispheric stroke, excluding pure cortical damage. All patients were studied within 10 days of symptom onset. TMS-evoked potentials (TEPs) were collected via a TMS-compatible electroencephalogram system (TMS-EEG) concurrently with motor-evoked responses (MEPs) induced in the contralateral first dorsal interosseous muscle. Comparison with age-matched healthy volunteers was made by collecting the same bilateral-stimulation data in nine healthy volunteers as controls. Excitability in the acute phase revealed relevant changes in the relationship between left lesioned and contralesionally right hemispheric homologous areas both for TEPs and MEPs. While the paretic hand displayed reduced MEPs compared to the non-paretic hand and to healthy volunteers, TEPs revealed an overexcitable lesioned hemisphere with respect to both healthy volunteers and the contra-lesion side. Our quantitative results advance the understanding of the impairment of intracortical inhibitory networks. The neuronal dysfunction most probably changes the excitatory/inhibitory on-center off-surround organization that supports already acquired learning and reorganization phenomena that support recovery from stroke sequelae.

8.
Brain Stimul ; 16(2): 567-593, 2023.
Article in English | MEDLINE | ID: mdl-36828303

ABSTRACT

Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.


Subject(s)
Electroencephalography , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Reproducibility of Results , Electroencephalography/methods , Evoked Potentials/physiology , Data Collection
9.
Brain Stimul ; 16(2): 515-539, 2023.
Article in English | MEDLINE | ID: mdl-36828302

ABSTRACT

Neurophysiological effects of transcranial direct current stimulation (tDCS) have been extensively studied over the primary motor cortex (M1). Much less is however known about its effects over non-motor areas, such as the prefrontal cortex (PFC), which is the neuronal foundation for many high-level cognitive functions and involved in neuropsychiatric disorders. In this study, we, therefore, explored the transferability of cathodal tDCS effects over M1 to the PFC. Eighteen healthy human participants (11 males and 8 females) were involved in eight randomized sessions per participant, in which four cathodal tDCS dosages, low, medium, and high, as well as sham stimulation, were applied over the left M1 and left PFC. After-effects of tDCS were evaluated via transcranial magnetic stimulation (TMS)-electroencephalography (EEG), and TMS-elicited motor evoked potentials (MEP), for the outcome parameters TMS-evoked potentials (TEP), TMS-evoked oscillations, and MEP amplitude alterations. TEPs were studied both at the regional and global scalp levels. The results indicate a regional dosage-dependent nonlinear neurophysiological effect of M1 tDCS, which is not one-to-one transferable to PFC tDCS. Low and high dosages of M1 tDCS reduced early positive TEP peaks (P30, P60), and MEP amplitudes, while an enhancement was observed for medium dosage M1 tDCS (P30). In contrast, prefrontal low, medium and high dosage tDCS uniformly reduced the early positive TEP peak amplitudes. Furthermore, for both cortical areas, regional tDCS-induced modulatory effects were not observed for late TEP peaks, nor TMS-evoked oscillations. However, at the global scalp level, widespread effects of tDCS were observed for both, TMS-evoked potentials and oscillations. This study provides the first direct physiological comparison of tDCS effects applied over different brain areas and therefore delivers crucial information for future tDCS applications.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Female , Humans , Male , Electroencephalography , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods
11.
J Neurosci Methods ; 382: 109693, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36057330

ABSTRACT

Neuronal electroencephalography (EEG) signals arise from the cortical postsynaptic currents. Due to the conductive properties of the head, these neuronal sources produce relatively smeared spatial patterns in EEG. We can model these topographies to deduce which signals reflect genuine TMS-evoked cortical activity and which data components are merely noise and artifacts. This review will concentrate on two source-based artifact-rejection techniques developed for TMS-EEG data analysis, signal-space-projection-source-informed reconstruction (SSP-SIR), and the source-estimate-utilizing noise-discarding algorithm (SOUND). The former method was designed for rejecting TMS-evoked muscle artifacts, while the latter was developed to suppress noise signals from EEG and magnetoencephalography (MEG) in general. We shall cover the theoretical background for both methods, but most importantly, we will describe some essential practical perspectives for using these techniques effectively. We demonstrate and explain what approaches produce the most reliable inverse estimates after cleaning the data or how to perform non-biased comparisons between cleaned datasets. All noise-cleaning algorithms compromise the signals of interest to a degree. We elaborate on how the source-based methods allow objective quantification of the overcorrection. Finally, we consider possible future directions. While this article concentrates on TMS-EEG data analysis, many theoretical and practical aspects, presented here, can be readily applied in other EEG/MEG applications. Overall, the source-based cleaning methods provide a valuable set of TMS-EEG preprocessing tools. We can objectively evaluate their performance regarding possible overcorrection. Furthermore, the overcorrection can always be taken into account to compare cleaned datasets reliably. The described methods are based on current electrophysiological and anatomical understanding of the head and the EEG generators; strong assumptions of the statistical properties of the noise and artifact signals, such as independence, are not needed.


Subject(s)
Artifacts , Transcranial Magnetic Stimulation , Transcranial Magnetic Stimulation/methods , Electroencephalography/methods , Magnetoencephalography/methods , Algorithms
12.
J Neurosci Methods ; 371: 109494, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35143852

ABSTRACT

Combining transcranial magnetic stimulation (TMS) with electroencephalography (EEG) is growing in popularity as a method for probing the reactivity and connectivity of neural circuits in basic and clinical research. However, using EEG to measure the neural responses to TMS is challenging due to the unique artifacts introduced by combining the two techniques. In this paper, we overview the artifacts present in TMS-EEG data and the offline cleaning methods used to suppress these unwanted signals. We then describe how open science practices, including the development of open-source toolboxes designed for TMS-EEG analysis (e.g., TESA - the TMS-EEG signal analyser), have improved the availability and reproducibility of TMS-EEG cleaning methods. We provide theoretical and practical considerations for designing TMS-EEG cleaning pipelines and then give an example of how to compare different pipelines using TESA. We show that changing even a single step in a pipeline designed to suppress decay artifacts results in TMS-evoked potentials (TEPs) with small differences in amplitude and spatial topography. The variability in TEPs resulting from the choice of cleaning pipeline has important implications for comparing TMS-EEG findings between research groups which use different online and offline approaches. Finally, we discuss the challenges of validating cleaning pipelines and recommend that researchers compare outcomes from TMS-EEG experiments using multiple pipelines to ensure findings are not related to the choice of cleaning methods. We conclude that the continued improvement, availability, and validation of cleaning pipelines is essential to ensure TMS-EEG reaches its full potential as a method for studying human neurophysiology.


Subject(s)
Electroencephalography , Transcranial Magnetic Stimulation , Artifacts , Electroencephalography/methods , Evoked Potentials/physiology , Humans , Reproducibility of Results , Transcranial Magnetic Stimulation/methods
13.
Open Res Eur ; 2: 45, 2022.
Article in English | MEDLINE | ID: mdl-36035767

ABSTRACT

Background: Spontaneous cortical oscillations have been shown to modulate cortical responses to transcranial magnetic stimulation (TMS). However, whether these oscillations influence cortical effective connectivity is largely unknown. We conducted a pilot study to set the basis for addressing how spontaneous oscillations affect cortical effective connectivity measured through TMS-evoked potentials (TEPs). Methods: We applied TMS to the left primary motor cortex and right pre-supplementary motor area of three subjects while recording EEG. We classified trials off-line into positive- and negative-phase classes according to the mu and beta rhythms. We calculated differences in the global mean-field amplitude (GMFA) and compared the cortical spreading of the TMS-evoked activity between the two classes. Results: Phase affected the GMFA in four out of 12 datasets (3 subjects × 2 stimulation sites × 2 frequency bands). Two of the observed significant intervals were before 50 ms, two between 50 and 100 ms, and one after 100 ms post-stimulus. Source estimates showed complex spatial differences between the classes in the cortical spreading of the TMS-evoked activity. Conclusions: TMS-evoked effective connectivity seems to depend on the phase of local cortical oscillations at the stimulated site. This work paves the way to design future closed-loop stimulation paradigms.

14.
Neuroimage ; 239: 118272, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34144161

ABSTRACT

Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) allow one to assess cortical excitability and effective connectivity in clinical and basic research. However, obtaining clean TEPs is challenging due to the various TMS-related artifacts that contaminate the electroencephalographic (EEG) signal when the TMS pulse is delivered. Different preprocessing approaches have been employed to remove the artifacts, but the degree of artifact reduction or signal distortion introduced in this phase of analysis is still unknown. Knowing and controlling this potential source of uncertainty will increase the inter-rater reliability of TEPs and improve the comparability between TMS-EEG studies. The goal of this study was to assess the variability in TEP waveforms due to of the use of different preprocessing pipelines. To accomplish this aim, we preprocessed the same TMS-EEG data with four different pipelines and compared the results. The dataset was obtained from 16 subjects in two identical recording sessions, each session consisting of both left dorsolateral prefrontal cortex and left inferior parietal lobule stimulation at 100% of the resting motor threshold. Considerable differences in TEP amplitudes and global mean field power (GMFP) were found between the preprocessing pipelines. Topographies of TEPs from the different pipelines were all highly correlated (ρ>0.8) at latencies over 100 ms. By contrast, waveforms at latencies under 100 ms showed a variable level of correlation, with ρ ranging between 0.2 and 0.9. Moreover, the test-retest reliability of TEPs depended on the preprocessing pipeline. Taken together, these results take us to suggest that the choice of the preprocessing approach has a marked impact on the final TEP, and that further studies are needed to understand advantages and disadvantages of the different approaches.


Subject(s)
Artifacts , Electroencephalography/methods , Multimodal Imaging/methods , Transcranial Magnetic Stimulation/methods , Adult , Datasets as Topic , Female , Humans , Magnetic Resonance Imaging , Male , Observer Variation , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Reaction Time , Reproducibility of Results , Young Adult
17.
Curr Biol ; 30(11): 2139-2145.e5, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32302588

ABSTRACT

Our memories frequently have features in common. For example, a learned sequence of words or actions can follow a common rule, which determines their serial order, despite being composed of very different events [1, 2]. This common abstract structure might link the fates of memories together. We tested this idea by creating different types of memory task: a sequence of words or actions that either did or did not have a common structure. Participants learned one of these memory tasks and then they learned another type of memory task 6 h later, either with or without the same structure. We then tested the newly formed memory's susceptibility to interference. We found that the newly formed memory was protected from interference when it shared a common structure with the earlier memory. Specifically, learning a sequence of words protected a subsequent sequence of actions learned hours later from interference, and conversely, learning a sequence of actions protected a subsequent sequence of words learned hours later from interference provided the sequences shared a common structure. Yet this protection of the newly formed memory came at a cost. The earlier memory had disrupted recall when it had the same rather than a different structure to the newly formed and protected memory. Thus, a common structure can determine what is retained (i.e., protected) and what is modified (i.e., disrupted). Our work reveals that a shared common structure links the fate of otherwise different types of memories together and identifies a novel mechanism for memory modification.


Subject(s)
Learning/classification , Memory/classification , Mental Recall , Psychomotor Performance , Adult , Female , Humans , Male , Young Adult
18.
Sci Rep ; 10(1): 3168, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32081901

ABSTRACT

Measuring the brain's response to transcranial magnetic stimulation (TMS) with electroencephalography (EEG) offers unique insights into the cortical circuits activated following stimulation, particularly in non-motor regions where less is known about TMS physiology. However, the mechanisms underlying TMS-evoked EEG potentials (TEPs) remain largely unknown. We assessed TEP sensitivity to changes in excitatory neurotransmission mediated by n-methyl-d-aspartate (NMDA) receptors following stimulation of non-motor regions. In fourteen male volunteers, resting EEG and TEPs from prefrontal (PFC) and parietal (PAR) cortex were measured before and after administration of either dextromethorphan (NMDA receptor antagonist) or placebo across two sessions in a double-blinded pseudo-randomised crossover design. At baseline, there were amplitude differences between PFC and PAR TEPs across a wide time range (15-250 ms), however the signals were correlated after ~80 ms, suggesting early peaks reflect site-specific activity, whereas late peaks reflect activity patterns less dependent on the stimulated sites. Early TEP peaks were not reliably altered following dextromethorphan compared to placebo, although findings were less clear for later peaks, and low frequency resting oscillations were reduced in power. Our findings suggest that early TEP peaks (<80 ms) from PFC and PAR reflect stimulation site specific activity that is largely insensitive to changes in NMDA receptor-mediated neurotransmission.


Subject(s)
Evoked Potentials , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Transcranial Magnetic Stimulation , Adult , Bayes Theorem , Cross-Over Studies , Dextromethorphan/pharmacology , Double-Blind Method , Electroencephalography , Humans , Magnetic Resonance Imaging , Male , Neurosciences , Parietal Lobe/physiology , Prefrontal Cortex/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Young Adult
19.
Front Hum Neurosci ; 14: 536070, 2020.
Article in English | MEDLINE | ID: mdl-33390915

ABSTRACT

BACKGROUND: To probe the functional role of brain oscillations, transcranial alternating current stimulation (tACS) has proven to be a useful neuroscientific tool. Because of the excessive tACS-caused artifact at the stimulation frequency in electroencephalography (EEG) signals, tACS + EEG studies have been mostly limited to compare brain activity between recordings before and after concurrent tACS. Critically, attempts to suppress the artifact in the data cannot assure that the entire artifact is removed while brain activity is preserved. The current study aims to evaluate the feasibility of specific artifact correction techniques to clean tACS-contaminated EEG data. NEW METHOD: In the first experiment, we used a phantom head to have full control over the signal to be analyzed. Driving pre-recorded human brain-oscillation signals through a dipolar current source within the phantom, we simultaneously applied tACS and compared the performance of different artifact-correction techniques: sine subtraction, template subtraction, and signal-space projection (SSP). In the second experiment, we combined tACS and EEG on one human subject to demonstrate the best-performing data-correction approach in a proof of principle. RESULTS: The tACS artifact was highly attenuated by SSP in the phantom and the human EEG; thus, we were able to recover the amplitude and phase of the oscillatory activity. In the human experiment, event-related desynchronization could be restored after correcting the artifact. COMPARISON WITH EXISTING METHODS: The best results were achieved with SSP, which outperformed sine subtraction and template subtraction. CONCLUSION: Our results demonstrate the feasibility of SSP by applying it to a phantom measurement with pre-recorded signal and one human tACS + EEG dataset. For a full validation of SSP, more data are needed.

20.
Brain Topogr ; 33(1): 1-9, 2020 01.
Article in English | MEDLINE | ID: mdl-31290050

ABSTRACT

The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is commonly applied for studying the effective connectivity of neuronal circuits. The stimulation excites neurons, and the resulting TMS-evoked potentials (TEPs) are recorded with EEG. A serious obstacle in this method is the generation of large muscle artifacts from scalp muscles, especially when frontolateral and temporoparietal, such as speech, areas are stimulated. Here, TMS-EEG data were processed with the signal-space projection and source-informed reconstruction (SSP-SIR) artifact-removal methods to suppress these artifacts. SSP-SIR suppressed muscle artifacts according to the difference in frequency contents of neuronal signals and muscle activity. The effectiveness of SSP-SIR in rejecting muscle artifacts and the degree of excessive attenuation of brain EEG signals were investigated by comparing the processed versions of the recorded TMS-EEG data with simulated data. The calculated individual lead-field matrix describing how the brain signals spread on the cortex were used as simulated data. We conclude that SSP-SIR was effective in suppressing artifacts also when frontolateral and temporoparietal cortical sites were stimulated, but it may have suppressed also the brain signals near the stimulation site. Effective connectivity originating from the speech-related areas may be studied even when speech areas are stimulated at least on the contralateral hemisphere where the signals were not suppressed that much.


Subject(s)
Brain/physiology , Electroencephalography/methods , Speech/physiology , Transcranial Magnetic Stimulation/methods , Adult , Algorithms , Artifacts , Brain Mapping/methods , Electronic Data Processing , Evoked Potentials/physiology , Female , Humans , Male , Muscle, Skeletal/physiology , Neurons , Scalp
SELECTION OF CITATIONS
SEARCH DETAIL
...