Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 9(12)2017 12 04.
Article in English | MEDLINE | ID: mdl-29207524

ABSTRACT

Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats (Eidolon helvum) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell culture inoculated with one of the samples (ZFB06-106) exhibited remarkable cytopathic changes. Based on the ultrastructural property in negative staining and cross-reactivity in immunofluorescence assays, the virus was suspected to be an adenovirus, and tentatively named E. helvum adenovirus 06-106 (EhAdV 06-106). Analysis of the full-length genome of 30,134 bp, determined by next-generation sequencing, showed the presence of 28 open reading frames. Phylogenetic analyses confirmed that EhAdV 06-106 represented a novel bat adenovirus species in the genus Mastadenovirus. The virus shared similar characteristics of low G + C contents with recently isolated members of species Bat mastadenoviruses E, F and G, from which EhAdV 06-106 diverged by more than 15% based on the distance matrix analysis of DNA polymerase amino acid sequences. According to the taxonomic criteria, we propose the tentative new species name "Bat mastadenovirus H". Because EhAdV 06-106 exhibited a wide in vitro cell tropism, the virus might have a potential risk as an emerging virus through cross-species transmission.


Subject(s)
Chiroptera/virology , Mastadenovirus/classification , Mastadenovirus/isolation & purification , Animals , Base Composition , Chlorocebus aethiops , Cytopathogenic Effect, Viral , DNA-Directed DNA Polymerase/genetics , Genome, Viral , Microscopy, Electron , Open Reading Frames , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Serotyping , Spleen/virology , Vero Cells , Virus Cultivation , Whole Genome Sequencing , Zambia
2.
Infect Genet Evol ; 32: 143-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25791930

ABSTRACT

The role played by bats as a potential source of transmission of Leptospira spp. to humans is poorly understood, despite various pathogenic Leptospira spp. being identified in these mammals. Here, we investigated the prevalence and diversity of pathogenic Leptospira spp. that infect the straw-colored fruit bat (Eidolon helvum). We captured this bat species, which is widely distributed in Africa, in Zambia during 2008-2013. We detected the flagellin B gene (flaB) from pathogenic Leptospira spp. in kidney samples from 79 of 529 E. helvum (14.9%) bats. Phylogenetic analysis of 70 flaB fragments amplified from E. helvum samples and previously reported sequences, revealed that 12 of the fragments grouped with Leptospira borgpetersenii and Leptospira kirschneri; however, the remaining 58 flaB fragments appeared not to be associated with any reported species. Additionally, the 16S ribosomal RNA gene (rrs) amplified from 27 randomly chosen flaB-positive samples was compared with previously reported sequences, including bat-derived Leptospira spp. All 27 rrs fragments clustered into a pathogenic group. Eight fragments were located in unique branches, the other 19 fragments were closely related to Leptospira spp. detected in bats. These results show that rrs sequences in bats are genetically related to each other without regional variation, suggesting that Leptospira are evolutionarily well-adapted to bats and have uniquely evolved in the bat population. Our study indicates that pathogenic Leptospira spp. in E. helvum in Zambia have unique genotypes.


Subject(s)
Chiroptera/microbiology , Leptospira/genetics , Leptospirosis/veterinary , Animal Migration , Animals , Democratic Republic of the Congo/epidemiology , Leptospirosis/epidemiology , Leptospirosis/microbiology , Molecular Epidemiology , Phylogeny , Zambia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...