Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(3): e0265427, 2022.
Article in English | MEDLINE | ID: mdl-35294486

ABSTRACT

BACKGROUND: 18F-fluorodeoxyglucose (FDG) PET/CT is recommended for evaluation of intermediate-risk indeterminate pulmonary nodules (IPNs). While highly sensitive, the specificity of FDG remains suboptimal for differentiating malignant from benign nodules, particularly in areas where fungal lung diseases are prevalent. Thus, a cancer-specific imaging probe is greatly needed. In this study, we tested the hypothesis that a PET radiotracer (S)-4-(3-[18F]-fluoropropyl)-L-glutamic acid (FSPG) improves the diagnostic accuracy of IPNs compared to 18F-FDG PET/CT. METHODS: This study was conducted at a major academic medical center and an affiliated VA medical center. Twenty-six patients with newly discovered IPNs 7-30mm diameter or newly diagnosed lung cancer completed serial PET/CT scans utilizing 18F-FDG and 18F-FSPG, without intervening treatment of the lesion. The scans were independently reviewed by two dual-trained diagnostic radiology and nuclear medicine physicians. Characteristics evaluated included quantitative SUVmax values of the pulmonary nodules and metastases. RESULTS: A total of 17 out of 26 patients had cancer and 9 had benign lesions. 18F-FSPG was negative in 6 of 9 benign lesions compared to 7 of 9 with 18F-FDG. 18F-FSPG and 18F-FDG were positive in 14 of 17 and 12 of 17 malignant lesions, respectively. 18F-FSPG detected brain and intracardiac metastases missed by 18F-FDG PET in one case, while 18F-FDG detected a metastasis to the kidney missed by 18F-FSPG. CONCLUSION: In this pilot study, there was no significant difference in overall diagnostic accuracy between 18F-FSPG and 18F-FDG for the evaluation of IPNs and staging of lung cancer. Additional studies will be needed to determine the clinical utility of this tracer in the management of IPNs and lung cancer.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Fluorodeoxyglucose F18 , Glutamic Acid , Humans , Lung Neoplasms/diagnostic imaging , Multiple Pulmonary Nodules/diagnostic imaging , Pilot Projects , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals , Sensitivity and Specificity
2.
JTO Clin Res Rep ; 2(3): 100110, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34589992

ABSTRACT

INTRODUCTION: Blood-based next-generation sequencing assays of circulating tumor DNA (ctDNA) have the ability to detect tumor-associated mutations in patients with SCLC. We sought to characterize the relationship between ctDNA mean variant allele frequency (VAF) and radiographic total-body tumor volume (TV) in patients with SCLC. METHODS: We identified matched blood draws and computed tomography (CT) or positron emission tomography (PET) scans within a prospective SCLC blood banking cohort. We sequenced plasma using our previously developed 14-gene SCLC-specific ctDNA assay. Three-dimensional TV was determined from PET and CT scans using MIM software and reviewed by radiation oncologists. Univariate association and multivariate regression analyses were performed to evaluate the association between mean VAF and total-body TV. RESULTS: We analyzed 75 matched blood draws and CT or PET scans from 25 unique patients with SCLC. Univariate analysis revealed a positive association between mean VAF and total-body TV (Spearman's ρ = 0.292, p < 0.01), and when considering only treatment-naive and pretreatment patients (n = 11), there was an increase in the magnitude of association (ρ = 0.618, p = 0.048). The relationship remained significant when adjusting for treatment status and bone metastases (p = 0.046). In the subgroup of patients with TP53 variants, univariate analysis revealed a significant association (ρ = 0.762, p = 0.037) only when considering treatment-naive and pretreatment patients (n = 8). CONCLUSIONS: We observed a positive association between mean VAF and total-body TV in patients with SCLC, suggesting mean VAF may represent a dynamic biomarker of tumor burden that could be followed to monitor disease status.

3.
Ann Am Thorac Soc ; 18(7): 1227-1234, 2021 07.
Article in English | MEDLINE | ID: mdl-33400907

ABSTRACT

Rationale: A prospective longitudinal cohort of individuals at high risk of developing lung cancer was established to build a biorepository of carefully annotated biological specimens and low-dose computed tomography (LDCT) chest images for derivation and validation of candidate biomarkers for early detection of lung cancer.Objectives: The goal of this study is to characterize individuals with high risk for lung cancer, accumulating valuable biospecimens and LDCT chest scans longitudinally over 5 years.Methods: Participants 55-80 years of age with a 5-year estimated risk of developing lung cancer >1.5% were recruited and enrolled from clinics at the Vanderbilt University Medical Center, Veteran Affairs Medical Center, and Meharry Medical Center. Individual demographic characteristics were assessed via questionnaire at baseline. Participants underwent an LDCT scan, spirometry, sputum cytology, and research bronchoscopy at the time of enrollment. Participants will be followed yearly for 5 years. Positive LDCT scans are followed-up according to standard of care. The clinical, imaging, and biospecimen data are collected prospectively and stored in a biorepository. Participants are offered smoking cessation counseling at each study visit.Results: A total of 480 participants were enrolled at study baseline and consented to sharing their data and biospecimens for research. Participants are followed with yearly clinic visits to collect imaging data and biospecimens. To date, a total of 19 cancers (13 adenocarcinomas, four squamous cell carcinomas, one large cell neuroendocrine, and one small-cell lung cancer) have been identified.Conclusions: We established a unique prospective cohort of individuals at high risk for lung cancer, enrolled at three institutions, for whom full clinical data, well-annotated LDCT scans, and biospecimens are being collected longitudinally. This repository will allow for the derivation and independent validation of clinical, imaging, and molecular biomarkers of risk for diagnosis of lung cancer.Clinical trial registered with ClinicalTrials.gov (NCT01475500).


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Biomarkers , Humans , Lung Neoplasms/diagnostic imaging , Mass Screening , Prospective Studies , Tomography, X-Ray Computed
4.
JTO Clin Res Rep ; 1(2): 100024, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34589931

ABSTRACT

INTRODUCTION: Most patients (70%) with limited-stage SCLC (LS-SCLC) who are treated with curative-intent therapy suffer disease relapse and cancer-related death. We evaluated circulating tumor DNA (ctDNA) as a predictor of disease relapse and death after definitive therapy in patients with LS-SCLC. METHODS: In our previous work, we developed a plasma-based ctDNA assay to sequence 14 genes (TP53, RB1, BRAF, KIT, NOTCH1-4, PIK3CA, PTEN, FGFR1, MYC, MYCL1, and MYCN) that are frequently mutated in SCLC. In this work, we evaluated 177 plasma samples from 23 patients with LS-SCLC who completed definitive chemoradiation (n = 21) or surgical resection (n = 2) and had an end-of-treatment blood collection (median 4 d, range 0-40 d from treatment completion) plus monthly surveillance blood sampling. Median overall survival (OS) and progression-free survival (PFS) were compared using a Wilcoxon test. RESULTS: The median OS among patients in whom we ever detected ctDNA after definitive treatment (n = 15) was 18.2 months compared with a median OS of greater than 48 months among patients in whom we never detected ctDNA after definitive treatment (n = 8; p = 0.081). The median PFS among patients in whom we ever detected ctDNA after definitive treatment was 9.1 months compared with a median PFS of greater than 48 months among patients in whom we never detected ctDNA after definitive treatment (p < 0.001). CONCLUSIONS: Detection of ctDNA in patients with LS-SCLC after curative-intent therapy predicts disease relapse and death. Prospective trials using ctDNA as an integral biomarker for therapeutic selection should be considered in SCLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...