Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732684

ABSTRACT

Magnetorheological (MR) materials are smart materials that can change their rheological characteristics when exposed to a magnetic field. Such rheological properties include viscosity and dynamic modulus. MR materials have emerged as one of the most efficient smart materials that can modify mechanical and viscoelastic characteristics. Depending on the medium used, MR materials can be classified into two types: magnetorheological fluids (MRFs) and magnetorheological elastomers (MREs). MREs are classified as isotropic or anisotropic based on CIP distribution inside the elastomer matrix. A unique hybrid material incorporating MRE and MRF is constructed in this work to investigate, compare, and the dynamic properties of isotropic, anisotropic, hybrid isotropic, and hybrid anisotropic MREs under various magnetic fields (0, 104, and 160.2 mT). The created samples are subjected to extensive testing, including static and dynamic evaluations. In the static tests, experiments use a compression linear displacement mode with a fixed maximum gap change of 3 mm. The temperature is maintained at a constant level of 24 °C throughout the 40 s test duration for each test, and the magnetic field is incrementally increased by varying the number of magnets, ranging from 0 to 160.2 mT for dynamic qualities using compression oscillations on a dynamic mechanical analyzer (DMA), including frequency and strain-dependent data. These experiments, carried out using sinusoidal shear movements, include an excitation frequency range of 0.1 Hz to 15 Hz while preserving, with a fixed shear strain of 2%.

2.
3 Biotech ; 13(3): 109, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36875961

ABSTRACT

For many biomedical applications, high-precision CO2 detection with a rapid response is essential. Due to the superior surface-active characteristics, 2D materials are particularly crucial for electrochemical sensors. The liquid phase exfoliation method of 2D Co2Te3 production is used to achieve the electrochemical sensing of CO2. The Co2Te3 electrode performs better than other CO2 detectors in terms of linearity, low detection limit, and high sensitivity. The outstanding physical characteristics of the electrocatalyst, including its large specific surface area, quick electron transport, and presence of a surface charge, can be credited for its extraordinary electrocatalytic activity. More importantly, the suggested electrochemical sensor has great repeatability, strong stability, and outstanding selectivity. Additionally, the electrochemical sensor based on Co2Te3 could be used to monitor respiratory alkalosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03497-z.

3.
3 Biotech ; 12(12): 334, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36330379

ABSTRACT

The concentration of carbon dioxide (CO2) in unhealthy people differs greatly from healthy people. High-precision CO2 detection with a quick response time is essential for many biomedical applications. A major focus of this research is on the detection of CO2, one of the most important health biomarkers. We investigated a low-cost, flexible, and reliable strategy by using dyes for colorimetric CO2 sensing in this study. The impacts of temperature, pH, reaction time, reusability, concentration, and dye selectivity were studied thoroughly. This study described real-time CO2 analysis. Using this multi-dye method, we got an average detection limit of 1.98 ppm for CO2, in the range of 50-120 ppm. A portable colorimetric instrument with a smartphone-assisted unit was constructed to determine the relative red/green/blue values for real-time and practical applications within 15 s of interaction and the readings are very similar to those of an optical fiber probe. Environmental and biological chemistry applications are likely to benefit greatly from this unique approach.

4.
Polymers (Basel) ; 14(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36236145

ABSTRACT

Magnetorheological elastomers (MREs) are smart viscoelastic materials in which their physical properties can be altered when subjected to a varying magnetic field strength. MREs consist of an elastomeric matrix mixed with magnetic particles, typically carbonyl iron particles (CIPs). The magnetic field-responsive property of MREs have led to their wide exposure in research. The potential development and commercialization of MRE-based devices requires extensive investigation to identify the essential factors that can affect their properties. For this reason, this research aims to investigate the impact of CIPs' type, concentration and coating on the rheological and mechanical properties of MREs. Isotropic MREs are fabricated with four different CIP compositions differing between hard or soft, and coated or uncoated samples. Each MRE composition have three different concentrations, which is 5%, 10%, and 20% by volume. The dynamic properties of the fabricated samples are tested by compression oscillations on a dynamic mechanical analyzer (DMA). Frequency and strain dependent measurements are performed to obtain the storage and loss modulus under different excitation frequencies and strain amplitudes. The emphasis is on the magnetorheological (MR) effect and the Payne effect which are an intrinsic characteristics of MREs. The effect of the CIPs' type, coating, and concentration on the MR and Payne effect of MREs are elucidated. Overall, it is observed that, the storage and loss modulus exhibit a strong dependence on both the frequency excitations and the strain amplitudes. Samples with hard and coated CIPs tend to have a higher MR effect than other samples. A decrease in the storage modulus and non-monotonous behavior of the loss modulus with increasing strain amplitude are observed, indicating the Payne effect. The results of this study can aid in the characterization of MREs and the proper selection of CIPs grades based on the application.

5.
RSC Adv ; 12(37): 23946-23955, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36128540

ABSTRACT

Exhaled breath (EB) contains several macromolecules that can be exploited as biomarkers to provide clinical information about various diseases. Hydrogen peroxide (H2O2) is a biomarker because it indicates bronchiectasis in humans. This paper presents a non-invasive, low-cost, and portable quantitative analysis for monitoring and quantifying H2O2 in EB. The sensing unit works on colorimetry by the synergetic effect of eosin blue, potassium permanganate, and starch-iodine (EPS) systems. Various sampling conditions like pH, response time, concentration, temperature and selectivity were examined. The UV-vis absorption study of the assay showed that the dye system could detect as low as ∼0.011 ppm levels of H2O2. A smart device-assisted detection unit that rapidly detects red, green and blue (RGB) values has been interfaced for practical and real-time application. The RGB value-based quantification of the H2O2 level was calibrated against NMR spectroscopy and exhibited a close correlation. Further, we adopted a machine learning approach to predict H2O2 concentration. For the evaluation, an artificial neural network (ANN) regression model returned 0.941 R 2 suggesting its great prospect for discrete level quantification of H2O2. The outcomes exemplified that the sensor could be used to detect bronchiectasis from exhaled breath.

6.
Materials (Basel) ; 15(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35591572

ABSTRACT

Magnetorheological elastomers (MREs) are a class of emerging smart materials in which their mechanical and rheological properties can be immediately and reversibly altered upon the application of a magnetic field. The change in the MRE properties under the magnetic field is widely known as the magnetorheological (MR) effect. Despite their inherent viscoelastic property-change characteristics, there are disadvantages incorporated with MREs, such as slow response time and the suspension of the magnetic particles in the elastomer matrix, which depress their MR effect. This study investigates the feasibility of a hybrid magnetorheological elastomer-fluid (MRE-F) for longitudinal vibration isolation. The hybrid MRE-F is fabricated by encapsulating MR fluid inside the elastomer matrix. The inclusion of the MR fluid can enhance the MR effect of the elastomer by providing a better response to the magnetic field and, hence, can improve the vibration isolation capabilities. For this purpose, an MRE-based coupling is developed, and isolation performance is investigated in terms of the linear transmissibility factor. The performance of the hybrid MRE-F was compared against two different MRE samples. The results show that further enhancement of MR-effect in MREs is possible by including MR fluid inside the elastomer. The hybrid MRE-F exhibited better stiffness change with the current increase and recorded the highest value of 55.911 N/mm. The transmissivity curves revealed that the MRE-F contributed to a broader shift in the natural frequency with a 7.2 Hz overall shift at 8.9 mT. The damping characteristics are higher in MRE-F, recording the highest percentage increase in damping with 33.04%. Overall, the results reveal the promising potential of hybrid MRE-F in developing MRE-based coupling for longitudinal vibration isolation.

7.
Materials (Basel) ; 14(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34885525

ABSTRACT

Mechanical energy is the most ubiquitous form of energy that can be harvested and converted into useful electrical power. For this reason, the piezoelectric energy harvesters (PEHs), with their inherent electromechanical coupling and high-power density, have been widely incorporated in many applications to generate power from ambient mechanical vibrations. However, one of the main challenges to the wider adoption of PEHs is how to optimize their design for maximum energy harvesting. In this paper, an investigation was conducted on the energy harvesting from seven piezoelectric patch shapes (differing in the number of edges) when attached to a non-deterministic laminated composite (single/double lamina) plate subjected to change in fiber orientation. The performance of the PEHs was examined through a coupled-field finite element (FE) model. The plate was simply supported, and its dynamics were randomized by attaching randomly distributed point masses on the plate surface in addition to applying randomly located time-harmonic point forces. The randomization of point masses and point force location on a thin plate produce non-deterministic response. The design optimization was performed by employing the ensemble-responses of the electrical potential developed across the electrodes of the piezoelectric patches. The results present the optimal fiber orientation and patch shape for maximum energy harvesting in the case of single and double lamina composite plates. The results show that the performance is optimal at 0° or 90° fiber orientation for single-lamina, and at 0°/0° and 0°/90° fiber orientations for double-lamina composites. For frequencies below 25 Hz, patches with a low number of edges exhibited a higher harvesting performance (triangular for single-lamina/quadrilateral for double-lamina). As for the broadband frequencies (above 25 Hz), the performance was optimal for the patches with a higher number of edges (dodecagonal for single-lamina/octagonal for double-lamina).

8.
Sci Rep ; 11(1): 4642, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33633253

ABSTRACT

Piezoelectric (PZT) shunt damping is an effective method to dissipate energy from a vibrating structure; however, most of the applications focus on targeting specific modes for structures vibrating at low-frequency range, i.e. deterministic substructure (DS). To optimally attenuate structures vibrating at high-frequency range, i.e. non-deterministic substructure (Non-DS) using a PZT shunt damper, it is found that the impedance of the PZT patch's terminal needs to be the complex conjugate of its inherent capacitance paralleled with the impedance 'faced' by its non-deterministic host structure underline moment actuation. The latter was derived in terms of estimation of the effective line moment mobility of a PZT patch on a Non-DS plate by integrating the expression of driving point moment mobility of an infinite thin plate. This paper conducts a parametric investigation to study the effect of changing the size, quantity and configuration of the PZT patch to the performance of the optimal PZT shunt dampers in dissipating the energy of its non-deterministic host structure. Results are shown in terms of energy reduction ratio of the thin plate when attached with optimal PZT shunt damper(s).

SELECTION OF CITATIONS
SEARCH DETAIL
...