Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139501

ABSTRACT

The Internet of Things (IoT) has brought about significant transformations in multiple sectors, including healthcare and navigation systems, by offering essential functionalities crucial for their operations. Nevertheless, there is ongoing debate surrounding the unexplored possibilities of the IoT within the energy industry. The requirement to better the performance of distributed energy systems necessitates transitioning from traditional mission-critical electric smart grid systems to digital twin-based IoT frameworks. Energy storage systems (ESSs) used within nano-grids have the potential to enhance energy utilization, fortify resilience, and promote sustainable practices by effectively storing surplus energy. The present study introduces a conceptual framework consisting of two fundamental modules: (1) Power optimization of energy storage systems (ESSs) in peer-to-peer (P2P) energy trading. (2) Task orchestration in IoT-enabled environments using digital twin technology. The optimization of energy storage systems (ESSs) aims to effectively manage surplus ESS energy by employing particle swarm optimization (PSO) techniques. This approach is designed to fulfill the energy needs of the ESS itself as well as meet the specific requirements of participating nano-grids. The primary objective of the IoT task orchestration system, which is based on the concept of digital twins, is to enhance the process of peer-to-peer nano-grid energy trading. This is achieved by integrating virtual control mechanisms through orchestration technology combining task generation, device virtualization, task mapping, task scheduling, and task allocation and deployment. The nano-grid energy trading system's architecture utilizes IoT sensors and Raspberry Pi-based edge technology to enable virtual operation. The evaluation of the proposed study is carried out through the examination of a simulated dataset derived from nano-grid dwellings. This research analyzes the efficacy of optimization approaches in mitigating energy trading costs and optimizing power utilization in energy storage systems (ESSs). The coordination of IoT devices is crucial in improving the system's overall efficiency.

2.
Life (Basel) ; 13(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37763348

ABSTRACT

Breast cancer, a leading cause of female mortality worldwide, poses a significant health challenge. Recent advancements in deep learning techniques have revolutionized breast cancer pathology by enabling accurate image classification. Various imaging methods, such as mammography, CT, MRI, ultrasound, and biopsies, aid in breast cancer detection. Computer-assisted pathological image classification is of paramount importance for breast cancer diagnosis. This study introduces a novel approach to breast cancer histopathological image classification. It leverages modified pre-trained CNN models and attention mechanisms to enhance model interpretability and robustness, emphasizing localized features and enabling accurate discrimination of complex cases. Our method involves transfer learning with deep CNN models-Xception, VGG16, ResNet50, MobileNet, and DenseNet121-augmented with the convolutional block attention module (CBAM). The pre-trained models are finetuned, and the two CBAM models are incorporated at the end of the pre-trained models. The models are compared to state-of-the-art breast cancer diagnosis approaches and tested for accuracy, precision, recall, and F1 score. The confusion matrices are used to evaluate and visualize the results of the compared models. They help in assessing the models' performance. The test accuracy rates for the attention mechanism (AM) using the Xception model on the "BreakHis" breast cancer dataset are encouraging at 99.2% and 99.5%. The test accuracy for DenseNet121 with AMs is 99.6%. The proposed approaches also performed better than previous approaches examined in the related studies.

3.
Sensors (Basel) ; 23(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631620

ABSTRACT

Unmanned aerial vehicle (UAV) networks offer a wide range of applications in an overload situation, broadcasting and advertising, public safety, disaster management, etc. Providing robust communication services to mobile users (MUs) is a challenging task because of the dynamic characteristics of MUs. Resource allocation, including subchannels, transmit power, and serving users, is a critical transmission problem; further, it is also crucial to improve the coverage and energy efficacy of UAV-assisted transmission networks. This paper presents an Enhanced Slime Mould Optimization with Deep-Learning-based Resource Allocation Approach (ESMOML-RAA) in UAV-enabled wireless networks. The presented ESMOML-RAA technique aims to efficiently accomplish computationally and energy-effective decisions. In addition, the ESMOML-RAA technique considers a UAV as a learning agent with the formation of a resource assignment decision as an action and designs a reward function with the intention of the minimization of the weighted resource consumption. For resource allocation, the presented ESMOML-RAA technique employs a highly parallelized long short-term memory (HP-LSTM) model with an ESMO algorithm as a hyperparameter optimizer. Using the ESMO algorithm helps properly tune the hyperparameters related to the HP-LSTM model. The performance validation of the ESMOML-RAA technique is tested using a series of simulations. This comparison study reports the enhanced performance of the ESMOML-RAA technique over other ML models.

4.
Sensors (Basel) ; 23(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37430812

ABSTRACT

The safeguarding of online services and prevention of unauthorized access by hackers rely heavily on user authentication, which is considered a crucial aspect of security. Currently, multi-factor authentication is used by enterprises to enhance security by integrating multiple verification methods rather than relying on a single method of authentication, which is considered less secure. Keystroke dynamics is a behavioral characteristic used to evaluate an individual's typing patterns to verify their legitimacy. This technique is preferred because the acquisition of such data is a simple process that does not require any additional user effort or equipment during the authentication process. This study proposes an optimized convolutional neural network that is designed to extract improved features by utilizing data synthesization and quantile transformation to maximize results. Additionally, an ensemble learning technique is used as the main algorithm for the training and testing phases. A publicly available benchmark dataset from Carnegie Mellon University (CMU) was utilized to evaluate the proposed method, achieving an average accuracy of 99.95%, an average equal error rate (EER) of 0.65%, and an average area under the curve (AUC) of 99.99%, surpassing recent advancements made on the CMU dataset.

5.
Sensors (Basel) ; 23(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36904798

ABSTRACT

Modern vehicle communication development is a continuous process in which cutting-edge security systems are required. Security is a main problem in the Vehicular Ad Hoc Network (VANET). Malicious node detection is one of the critical issues found in the VANET environment, with the ability to communicate and enhance the mechanism to enlarge the field. The vehicles are attacked by malicious nodes, especially DDoS attack detection. Several solutions are presented to overcome the issue, but none are solved in a real-time scenario using machine learning. During DDoS attacks, multiple vehicles are used in the attack as a flood on the targeted vehicle, so communication packets are not received, and replies to requests do not correspond in this regard. In this research, we selected the problem of malicious node detection and proposed a real-time malicious node detection system using machine learning. We proposed a distributed multi-layer classifier and evaluated the results using OMNET++ and SUMO with machine learning classification using GBT, LR, MLPC, RF, and SVM models. The group of normal vehicles and attacking vehicles dataset is considered to apply the proposed model. The simulation results effectively enhance the attack classification with an accuracy of 99%. Under LR and SVM, the system achieved 94 and 97%, respectively. The RF and GBT achieved better performance with 98% and 97% accuracy values, respectively. Since we have adopted Amazon Web Services, the network's performance has improved because training and testing time do not increase when we include more nodes in the network.

6.
Sensors (Basel) ; 22(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080960

ABSTRACT

An electrocardiogram (ECG) is an essential piece of medical equipment that helps diagnose various heart-related conditions in patients. An automated diagnostic tool is required to detect significant episodes in long-term ECG records. It is a very challenging task for cardiologists to analyze long-term ECG records in a short time. Therefore, a computer-based diagnosis tool is required to identify crucial episodes. Myocardial infarction (MI) and conduction disorders (CDs), sometimes known as heart blocks, are medical diseases that occur when a coronary artery becomes fully or suddenly stopped or when blood flow in these arteries slows dramatically. As a result, several researchers have utilized deep learning methods for MI and CD detection. However, there are one or more of the following challenges when using deep learning algorithms: (i) struggles with real-life data, (ii) the time after the training phase also requires high processing power, (iii) they are very computationally expensive, requiring large amounts of memory and computational resources, and it is not easy to transfer them to other problems, (iv) they are hard to describe and are not completely understood (black box), and (v) most of the literature is based on the MIT-BIH or PTB databases, which do not cover most of the crucial arrhythmias. This paper proposes a new deep learning approach based on machine learning for detecting MI and CDs using large PTB-XL ECG data. First, all challenging issues of these heart signals have been considered, as the signal data are from different datasets and the data are filtered. After that, the MI and CD signals are fed to the deep learning model to extract the deep features. In addition, a new custom activation function is proposed, which has fast convergence to the regular activation functions. Later, these features are fed to an external classifier, such as a support vector machine (SVM), for detection. The efficiency of the proposed method is demonstrated by the experimental findings, which show that it improves satisfactorily with an overall accuracy of 99.20% when using a CNN for extracting the features with an SVM classifier.


Subject(s)
Deep Learning , Myocardial Infarction , Algorithms , Arrhythmias, Cardiac/diagnosis , Electrocardiography , Humans , Myocardial Infarction/diagnosis , Signal Processing, Computer-Assisted
7.
Sensors (Basel) ; 23(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36616806

ABSTRACT

Telecommunication networks are growing exponentially due to their significant role in civilization and industry. As a result of this very significant role, diverse applications have been appeared, which require secured links for data transmission. However, Internet-of-Things (IoT) devices are a substantial field that utilizes the wireless communication infrastructure. However, the IoT, besides the diversity of communications, are more vulnerable to attacks due to the physical distribution in real world. Attackers may prevent the services from running or even forward all of the critical data across the network. That is, an Intrusion Detection System (IDS) has to be integrated into the communication networks. In the literature, there are numerous methodologies to implement the IDSs. In this paper, two distinct models are proposed. In the first model, a custom Convolutional Neural Network (CNN) was constructed and combined with Long Short Term Memory (LSTM) deep network layers. The second model was built about the all fully connected layers (dense layers) to construct an Artificial Neural Network (ANN). Thus, the second model, which is a custom of an ANN layers with various dimensions, is proposed. Results were outstanding a compared to the Logistic Regression algorithm (LR), where an accuracy of 97.01% was obtained in the second model and 96.08% in the first model, compared to the LR algorithm, which showed an accuracy of 92.8%.


Subject(s)
Deep Learning , Internet of Things , Internet , Algorithms , Computer Communication Networks
8.
Big Data ; 9(4): 265-278, 2021 08.
Article in English | MEDLINE | ID: mdl-33656352

ABSTRACT

The Internet of Things (IoT) is permeating our daily lives through continuous environmental monitoring and data collection. The promise of low latency communication, enhanced security, and efficient bandwidth utilization lead to the shift from mobile cloud computing to mobile edge computing. In this study, we propose an advanced deep reinforcement resource allocation and security-aware data offloading model that considers the constrained computation and radio resources of industrial IoT devices to guarantee efficient sharing of resources between multiple users. This model is formulated as an optimization problem with the goal of decreasing energy consumption and computation delay. This type of problem is non-deterministic polynomial time-hard due to the curse-of-dimensionality challenge, thus, a deep learning optimization approach is presented to find an optimal solution. In addition, a 128-bit Advanced Encryption Standard-based cryptographic approach is proposed to satisfy the data security requirements. Experimental evaluation results show that the proposed model can reduce offloading overhead in terms of energy and time by up to 64.7% in comparison with the local execution approach. It also outperforms the full offloading scenario by up to 13.2%, where it can select some computation tasks to be offloaded while optimally rejecting others. Finally, it is adaptable and scalable for a large number of mobile devices.


Subject(s)
Deep Learning , Algorithms , Cloud Computing , Computer Security , Resource Allocation
9.
Sensors (Basel) ; 22(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35009649

ABSTRACT

With the increasing number of mobile devices and IoT devices across a wide range of real-life applications, our mobile cloud computing devices will not cope with this growing number of audiences soon, which implies and demands the need to shift to fog computing. Task scheduling is one of the most demanding scopes after the trust computation inside the trustable nodes. The mobile devices and IoT devices transfer the resource-intensive tasks towards mobile cloud computing. Some tasks are resource-intensive and not trustable to allocate to the mobile cloud computing resources. This consequently gives rise to trust evaluation and data sync-up of devices joining and leaving the network. The resources are more intensive for cloud computing and mobile cloud computing. Time, energy, and resources are wasted due to the nontrustable nodes. This research article proposes a multilevel trust enhancement approach for efficient task scheduling in mobile cloud environments. We first calculate the trustable tasks needed to offload towards the mobile cloud computing. Then, an efficient and dynamic scheduler is added to enhance the task scheduling after trust computation using social and environmental trust computation techniques. To improve the time and energy efficiency of IoT and mobile devices using the proposed technique, the energy computation and time request computation are compared with the existing methods from literature, which identified improvements in the results. Our proposed approach is centralized to tackle constant SyncUPs of incoming devices' trust values with mobile cloud computing. With the benefits of mobile cloud computing, the centralized data distribution method is a positive approach.


Subject(s)
Cloud Computing , Trust , Algorithms , Computers, Handheld
SELECTION OF CITATIONS
SEARCH DETAIL
...