Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Space Res (Amst) ; 32: 8-16, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35065766

ABSTRACT

Long-duration space missions will need to rely on the use of plants in bio-regenerative life support systems (BLSSs) because these systems can produce fresh food and oxygen, reduce carbon dioxide levels, recycle metabolic waste, and purify water. In this scenario, the need for new experiments on the effects of altered gravity conditions on plant biological processes is increasing, and significant efforts should be devoted to new ideas aimed at increasing the scientific output and lowering the experimental costs. Here, we report the design of an easy-to-produce and inexpensive device conceived to analyze the effect of interaction between gravity and light on root tropisms. Each unit consisted of a polystyrene multi-slot rack with light-emitting diodes (LEDs), capable of holding Petri dishes and assembled with a particular filter-paper folding. The device was successfully used for the ROOTROPS (for root tropisms) experiment performed in the Large Diameter Centrifuge (LDC) and Random Positioning Machine (RPM) at ESA's European Space Research and Technology centre (ESTEC). During the experiments, four light treatments and six gravity conditions were factorially combined to study their effects on root orientation of Brassica oleracea seedlings. Light treatments (red, blue, and white) and a dark condition were tested under four hypergravity levels (20 g, 15 g, 10 g, 5 g), a 1 g control, and a simulated microgravity (RPM) condition. Results of validation tests showed that after 24 h, the assembled system remained unaltered, no slipping or displacement of seedlings occurred at any hypergravity treatment or on the RPM, and seedlings exhibited robust growth. Overall, the device was effective and reliable in achieving scientific goals, suggesting that it can be used for ground-based research on phototropism-gravitropism interactions. Moreover, the concepts developed can be further expanded for use in future spaceflight experiments with plants.


Subject(s)
Space Flight , Weightlessness , Gravitropism , Phototropism , Seedlings , Tropism
2.
Front Plant Sci ; 10: 1807, 2019.
Article in English | MEDLINE | ID: mdl-32153599

ABSTRACT

Root tropisms are important responses of plants, allowing them to adapt their growth direction. Research on plant tropisms is indispensable for future space programs that envisage plant-based life support systems for long-term missions and planet colonization. Root tropisms encompass responses toward or away from different environmental stimuli, with an underexplored level of mechanistic divergence. Research into signaling events that coordinate tropistic responses is complicated by the consistent coincidence of various environmental stimuli, often interacting via shared signaling mechanisms. On Earth the major determinant of root growth direction is the gravitational vector, acting through gravitropism and overruling most other tropistic responses to environmental stimuli. Critical advancements in the understanding of root tropisms have been achieved nullifying the gravitropic dominance with experiments performed in the microgravity environment. In this review, we summarize current knowledge on root tropisms to different environmental stimuli. We highlight that the term tropism must be used with care, because it can be easily confused with a change in root growth direction due to asymmetrical damage to the root, as can occur in apparent chemotropism, electrotropism, and magnetotropism. Clearly, the use of Arabidopsis thaliana as a model for tropism research contributed much to our understanding of the underlying regulatory processes and signaling events. However, pronounced differences in tropisms exist among species, and we argue that these should be further investigated to get a more comprehensive view of the signaling pathways and sensors. Finally, we point out that the Cholodny-Went theory of asymmetric auxin distribution remains to be the central and unifying tropistic mechanism after 100 years. Nevertheless, it becomes increasingly clear that the theory is not applicable to all root tropistic responses, and we propose further research to unravel commonalities and differences in the molecular and physiological processes orchestrating root tropisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...