Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(12): e23105, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149182

ABSTRACT

The present work focuses on the structural, morphological, electrical characteristics, and antibacterial activity of mesoporous silicon (PS) against S. aureus and E. coli. We depict the structural and antimicrobial activity of PS as a result of different etching times (10.0, 20.0, 30.0, 40.0, 50.0, and 60.0 min) with a current density of 100 mA/cm2. The structural and morphological characteristics of synthesized PS have been examined with Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). FTIR spectra have been used to confirmed the Si-O, Si-O-Si bond and the adsorption on the surface of PS nanoparticles. The formation of pores on the c-Si wafer results in an analysis of a photoluminescence (PL) band at 712 nm, which changes with etching time in a process similar to current density. The correlation exist among etching times and the ideality factor (η) and barrier height (фb). Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria showed enhanced antimicrobial activity against the PS nanoparticles. The synthesized of PS has been shown with good electrical and antimicrobial activities.

2.
Discov Nano ; 18(1): 155, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108894

ABSTRACT

The advancement of multidrug-resistant bacterial strains and their adverse effects is one of the most significant global health issues. The perovskite nanomaterial with combined antioxidant and antibacterial activities in one molecule has the potential for improved therapeutic solutions. In this work, Yttrium-doped Lanthanum Titanate (LaTi1 -xYxO3, where x = 0, 0.05, and 0.1) was synthesized using auto combustion technique. Excellent crystalline structure with a tetragonal system is revealed by X-ray diffraction analysis (XRD). UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared (FTIR), and photoluminescence (PL) were used to study its optical characteristics. The field emission scanning electron microscope (FE-SEM) shows rod-like pellet-shaped Yttrium-doped nanostructures, and the elements present were confirmed with the Energy Dispersive X-Ray Analysis (EDAX). Various concentrations of the synthesized materials were tested for antibacterial activity against Gram-positive (Staphylococcus aureus 902) and Gram-negative (E. coli 443) strains using the agar-well diffusion method with gentamicin antibiotic as a positive control. High antibacterial activity of 87.1% and 83.3% was shown by 10% Yttrium-doped LaTiO3 (LY(0.1)TO) at 500 mg/mL against both positive and negative stains, respectively. Moreover, the antioxidant properties of synthesized materials were assessed with IC50 values of 352.33 µg/mL, 458.055 µg/mL, and 440.163 µg/mL for samples LaTi1 - xYxO3, where x = 0, 0.05, and 0.1 respectively. The antibacterial and antioxidant capabilities of the proposed samples illustrate their applicability in various biomedical applications.

3.
Phys Rev Lett ; 109(24): 246601, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23368355

ABSTRACT

Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn(2)NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn(2)NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...