Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(35): 31648-31660, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692249

ABSTRACT

A novel benzopyran-based platinum (II)-3-hydroxy-2-tolyl-4H-chromen-4-one (HToC) complex has been prepared and studied by UV-visible spectrophotometry. The study is based on the colored complexation between Pt(II) and HToC in the pH range of 8.92-9.21, resulting in the formation of a stable binary yellow complex exhibiting λmax at 509-525 nm. The formed complex maintains linearity between 0.0 and 1.8 µg Pt(II) mL-1. The well-known qualitative analytical methods, including Job's method of continuous variations and the mole ratio approach, have both proven that the stoichiometry of the complex is 1:2 [Pt(II)/HToC]. Hence, the analytical results suggest that the formed platinum complex exhibits a square planar geometry. The values of various attributes corresponding to spectrophotometric studies and statistical calculations, such as the molar extinction coefficient (6.790 × 104 L mol-1 cm-1), Sandell's sensitivity (0.0029 µg Pt(II) cm-2), standard deviation (± 0.0011), RSD (0.317%), limit of detection (0.0147 µg mL-1) and correlation coefficient (0.9999), show that the performed study satisfies all of the criteria for good sensitivity, versatility, and cost-effectiveness. In order to have an apprehension of the molecular geometry and other structural specifics of the complex, DFT studies have been carried out. The in vitro anticancer potential of the ligand and its platinum complex in the human breast cancer cell line (T-27D), as determined by the MTT assay, reveals that the complex has better antiproliferative potential than the ligand. The antimicrobial potential of the complex has been successfully tested against both Gram-positive and -negative bacteria. Antioxidant capacity results suggest the better radical scavenging capacity of the complex than that of the ligand.

2.
J Mol Model ; 14(5): 375-83, 2008 May.
Article in English | MEDLINE | ID: mdl-18299903

ABSTRACT

The FTIR and Laser-Raman spectra of paraldehyde have been recorded in the regions 4000-400 cm(-1) and 3500-250 cm(-1) respectively. Molecular electronic energy, geometrical structure, harmonic vibrational spectra, infrared intensities and Raman scattering activities have been computed at the HF/6-31G(d,p) and B3LYP/6-31G(d,p) levels of theory. The results were compared with experimental values with the help of scaling procedures. The observed wave numbers in FTIR and Laser-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wave numbers in the expected range and are in good agreement with computed values.


Subject(s)
Paraldehyde/chemistry , Quantum Theory , Lasers , Mathematical Computing , Models, Molecular , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...