Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(8): 21199-21212, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36261635

ABSTRACT

Hydrolysis of sodium borohydride (NaBH4) offers substantial applications in the production of hydrogen but requires an inexpensive catalyst. Herein, silica (SP) and phosphorylated silica (SP-PA) are used as a catalyst for the generation of hydrogen from NaBH4 hydrolysis. The catalyst is prepared by sol-gel route synthesis by taking tetraethyl orthosilicate as the precursor of silica whereas phosphoric acid served as the gelation and phosphorylating agent. The prepared catalyst is characterized by FT-IR spectroscopy, XRD, SEM, and EDAX. The hydrogen generation rate at SP-PA particles (762.4 mL min-1 g-1) is higher than that of silica particles (133 mL min-1 g-1 of catalyst). The higher catalytic activity of SP-PA particles might be due to the acidic functionalities that enhance the hydrogen production rate. The kinetic parameters (activation energy and pre-exponential factor) are calculated from the Arrhenius plot and the thermodynamic parameters (enthalpy, entropy, and free energy change) are evaluated using the Erying plot. The calculated activation energy for NaBH4 hydrolysis at SP-PA catalyst is 29.92 kJ.mol-1 suggesting the high catalytic activity of SP-PA particles. The obtained entropy of activation (ΔS‡ = - 97.75 JK-1) suggested the Langmuir-Hinshelwood type associative mechanism for the hydrolysis of NaBH4 at SP-PA particles.


Subject(s)
Hydrogen , Silicon Dioxide , Hydrolysis , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Hydrogen/chemistry
2.
J Colloid Interface Sci ; 421: 78-84, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24594035

ABSTRACT

The present study reports the electrochemical determination of nitrite ion using citrate-gold nanoparticles (cit-AuNPs) decorated on meso-tetra(para-aminophenyl)porphyrinatocobalt(II) (Co(II)MTpAP) self-assembled glassy carbon electrode (GCE). The decoration of cit-AuNPs on Co(II)MTpAP was achieved with the aid of amine groups present on the surface of the self-assembled monolayer (SAM) of Co(II)MTpAP. The SEM image shows that the cit-AuNPs were densely packed on Co(II)MTpAP. The AuNPs decorated electrode was successfully used for the determination of nitrite ion. The cit-AuNPs decorated electrode not only shifted nitrite ion oxidation potential towards less positive potential but also greatly enhanced its current when compared to bare and Co(II)MTpAP SAM modified electrodes. The amperometric current increases linearly while increasing the concentration of nitrite ion ranging from 0.5×10(-6) to 4.7×10(-3) M and the detection limit was found to be 60 nM (S/N=3). Further, the modified electrode was successfully used to determine nitrite ion in the presence of 200-fold excess of common interferents such as Na+, NO3-, I-, K+, CO3(2-), Ca2+, SO4(2-), NH4+, Cl- and glucose. The practical application of the cit-AuNPs decorated electrode was demonstrated by determining nitrite ion in water samples.


Subject(s)
Carbon , Cobalt/chemistry , Electrodes , Gold/chemistry , Metal Nanoparticles , Nitrites/analysis , Porphyrins/chemistry , Limit of Detection , Microscopy, Electron, Scanning , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...