Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 7(3)2017 06 29.
Article in English | MEDLINE | ID: mdl-28661450

ABSTRACT

Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.


Subject(s)
Amyloid/metabolism , Reproduction , Animals , Female , Fertilization , Gametogenesis , Humans , Male , Spermatozoa/metabolism , Zona Pellucida/metabolism
2.
Mol Hum Reprod ; 22(11): 729-744, 2016 11.
Article in English | MEDLINE | ID: mdl-27445316

ABSTRACT

STUDY QUESTION: Do the CRES (cystatin-related epididymal spermatogenic) subgroup members, including CRES2, CRES3 and cystatin E2, contribute to the formation of a nonpathological, functional amyloid matrix in the mouse epididymal lumen? SUMMARY ANSWER: CRES2, CRES3 and cystatin E2 self-assemble with different aggregation properties into amyloids in vitro, are part of a common amyloid matrix in the mouse epididymal lumen and are present in extracellular vesicles. WHAT IS KNOWN ALREADY: Although previously thought only to be pathological, accumulating evidence has established that amyloids, which are highly ordered protein aggregates, can also carry out functional roles in the absence of pathology. We previously demonstrated that nonpathological amyloids are present in the epididymis; specifically, that the reproductive cystatin CRES forms amyloid and is present in the mouse epididymal lumen in a film-like amyloid matrix that is intimately associated with spermatozoa. Because the related proteins CRES2, CRES3 and cystatin E2 are also expressed in the epididymis, the present studies were carried out to determine if these proteins are also amyloidogenic in vitro and in vivo and thus may coordinately function with CRES as an amyloid structure. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: The epididymides from CD1 and Cst8 (CRES)129SvEv/B6 gene knockout (KO) and wild-type mice and antibodies that specifically recognize each CRES subgroup member were used for immunohistochemical and biochemical analyzes of CRES subgroup proteins. Methods classically used to identify amyloid, including the conformation-dependent dyes thioflavin S (ThS) and thioflavin T (ThT), conformation-dependent antibodies, protein aggregation disease ligand (which binds any amyloid independent of sequence) and negative stain electron microscopy (EM) were carried out to examine the amyloidogenic properties of CRES subgroup members. Immunofluorescence analysis and confocal microscopy were used for colocalization studies. MAIN RESULTS AND THE ROLE OF CHANCE: Immunoblot and immunofluorescence analyzes showed that CRES2, CRES3 and cystatin E2 were primarily found in the initial segment and intermediate zone of the epididymis and were profoundly downregulated in epididymides from CRES KO mice, suggesting integrated functions. Except for CRES3, which was only detected in a particulate form, proteins were present in the epididymal lumen in both soluble and particulate forms including in a film-like matrix and in extracellular vesicles. The use of amyloid-specific reagents determined that all CRES subgroup members were present as amyloids and colocalized to a common amyloid matrix present in the epididymal lumen. Negative stain EM, dot blot analysis and ThT plate assays showed that recombinant CRES2, CRES3 and cystatin E2 formed amyloid in vitro, albeit with different aggregation properties. Together, our studies demonstrate that a unique amyloid matrix composed of the CRES family of reproductive-specific cystatins and cystatin C is a normal component of the mouse epididymal lumen and may play a functional role in sperm maturation by coordinating interactions between the luminal fluid and spermatozoa. LIMITATIONS, REASONS FOR CAUTION: The structures examined in our studies were isolated from luminal fluid obtained by puncture of the epididymis and therefore we cannot rule out some contamination by epithelial cells. Although our studies show CRES family members are associated with extracellular vesicles, we have yet to determine if proteins are present on the surface or are within the vesicles. We also have not established if narrow/apical cells are the source of the CRES family extracellular vesicles. CRES and CRES2 have been previously found in the human epididymis and associated with spermatozoa; however, we have yet to determine if the human CRES subgroup proteins are amyloidogenic and if an amyloid matrix is present in the human epididymal lumen. WIDER IMPLICATIONS OF THE FINDINGS: Understanding the regulation and biological roles of amyloids, such as the CRES subgroup amyloid matrix that functions without causing pathology, could have broad implications for understanding pathological amyloids including those associated with neurodegenerative diseases and prionopathies. LARGE SCALE DATA: None. STUDY FUNDING AND COMPETING INTERESTS: This work was supported by NIH grants RO1HD033903 and RO1HD056182 to G.A.C. The authors declare there are no conflicts of interest.


Subject(s)
Amyloid/metabolism , Epididymis/metabolism , Extracellular Vesicles/metabolism , Sperm Maturation/physiology , Spermatogenesis/physiology , Animals , Blotting, Northern , Cystatin M/genetics , Cystatin M/metabolism , Cystatins/genetics , Cystatins/metabolism , Immunohistochemistry , Male , Mice , Mice, Knockout , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sperm Maturation/genetics , Spermatogenesis/genetics
3.
PLoS One ; 10(6): e0129907, 2015.
Article in English | MEDLINE | ID: mdl-26043223

ABSTRACT

The zona pellucida (ZP) surrounding the oocyte is an extracellular fibrillar matrix that plays critical roles during fertilization including species-specific gamete recognition and protection from polyspermy. The mouse ZP is composed of three proteins, ZP1, ZP2, and ZP3, all of which have a ZP polymerization domain that directs protein fibril formation and assembly into the three-dimensional ZP matrix. Egg coats surrounding oocytes in nonmammalian vertebrates and in invertebrates are also fibrillar matrices and are composed of ZP domain-containing proteins suggesting the basic structure and function of the ZP/egg coat is highly conserved. However, sequence similarity between ZP domains is low across species and thus the mechanism for the conservation of ZP/egg coat structure and its function is not known. Using approaches classically used to identify amyloid including conformation-dependent antibodies and dyes, X-ray diffraction, and negative stain electron microscopy, our studies suggest the mouse ZP is a functional amyloid. Amyloids are cross-ß sheet fibrillar structures that, while typically associated with neurodegenerative and prion diseases in mammals, can also carry out functional roles in normal cells without resulting pathology. An analysis of the ZP domain from mouse ZP3 and ZP3 homologs from five additional taxa using the algorithm AmylPred 2 to identify amyloidogenic sites, revealed in all taxa a remarkable conservation of regions that were predicted to form amyloid. This included a conserved amyloidogenic region that localized to a stretch of hydrophobic amino acids previously shown in mouse ZP3 to be essential for fibril assembly. Similarly, a domain in the yeast protein α-agglutinin/Sag 1p, that possesses ZP domain-like features and which is essential for mating, also had sites that were predicted to be amyloidogenic including a hydrophobic stretch that appeared analogous to the critical site in mouse ZP3. Together, these studies suggest that amyloidogenesis may be a conserved mechanism for ZP structure and function across billions of years of evolution.


Subject(s)
Amyloid/chemistry , Zona Pellucida/chemistry , Amino Acid Sequence , Animals , Conserved Sequence , Egg Proteins/chemistry , Egg Proteins/metabolism , Evolution, Molecular , Female , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Molecular Sequence Data , Polymerization , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...