Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ophthalmic Genet ; 45(2): 126-132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411150

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) occurs due to high blood glucose damage to the retina and leads to blindness if left untreated. KATP and related genes (KCNJ11 and ABCC8) play an important role in insulin secretion by glucose-stimulated pancreatic beta cells and the regulation of insulin secretion. KCNJ11 E23K (rs5219), ABCC8-3 C/T (rs1799854), Thr759Thr (rs1801261) and Arg1273Arg (rs1799859) are among the possible related single nucleotide polymorphisms (SNPs). The aim of this study is to find out how DR and these SNPs are associated with one another in the Turkish population. MATERIALS AND METHODS: This study included 176 patients with type 2 diabetes mellitus without retinopathy (T2DM-rp), 177 DR patients, and 204 controls. Genomic DNA was extracted from whole blood, and genotypes were determined by the PCR-RFLP method. RESULTS: In the present study, a significant difference was not found between all the groups in terms of Arg1273Arg polymorphism located in the ABCC8 gene. The T allele and the TT genotype in the -3 C/T polymorphism in this gene may have a protective effect in the development of DR (p = 0.036 for the TT genotype; p = 0.034 for T allele) and PDR (p = 0.042 and 0.025 for the TT genotype). The AA genotype showed a significant increase in the DR group compared to T2DM-rp in the KCNJ11 E23K polymorphism (p = 0.046). CONCLUSIONS: Consequently, the T allele and TT genotype in the -3 C/T polymorphism of the ABCC8 gene may have a protective marker on the development of DR and PDR, while the AA genotype in the E23K polymorphism of the KCNJ11 gene may be effective in the development of DR in the Turkish population.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Potassium Channels, Inwardly Rectifying , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics
2.
Medicine (Baltimore) ; 102(29): e34379, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37478216

ABSTRACT

Long noncoding RNAs (lncRNAs) play an important role in regulating gene expression. Changes in their expression have been associated with many types of cancer, including thyroid cancer. This study aimed to investigate how changes in the expression of potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) and HAGLR opposite strand lncRNA (HAGLROS) lncRNAs correlate with the development and clinicopathological characteristics of papillary thyroid cancer (PTC). Reverse transcription-quantitative polymerase chain reaction was used to investigate the expression of lncRNAs in both tumor and adjacent normal thyroid tissue samples of the patients. Expressions of KCNQ1OT1 and HAGLROS were upregulated in the patients tumor samples compared to the adjacent normal thyroid samples. KCNQ1OT1 expression was linked to microcarcinoma and gender, while HAGLROS expression was linked to microcarcinoma and tumor size. When only microcarcinoma samples were evaluated, KCNQ1OT1 expression was higher in tumor tissues compared to normal tissues; however, no significant difference was observed in HAGLROS expression. Our data suggests that high expressions of KCNQ1OT1 and HAGLROS might contribute to the development of PTC and disease progression, and both lncRNAs may be potential therapeutic targets in PTC patients.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Up-Regulation , Clinical Relevance , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
3.
EXCLI J ; 20: 1133-1144, 2021.
Article in English | MEDLINE | ID: mdl-34345232

ABSTRACT

Obesity is one of the most important health risks in postmenopausal women. Molecular pathways that are connected with obesity are believed to interact with the pathogenesis of breast cancer (BC). The aim of this research was to study the polymorphisms of two obesity-associated genes ADIPOQ and FTO that are also related to the pathogenesis of BC. Obesity-associated gene polymorphisms ADIPOQ rs1501299 and rs2241766, and FTO rs1477196, rs7206790, rs8047395, and rs9939609 were studied in 101 Turkish postmenopausal estrogen receptor-positive BC patients and 100 healthy control individuals. ADIPOQ rs1501299 was detected to be associated with protection against BC. The ADIPOQ rs1501299 TT genotype, the rs2241766 GT genotype and the G allele were found to be significantly higher in the control group. In addition, ADIPOQ rs1501299 polymorphism was protective in the recessive model and rs2241766 polymorphism was protective in the dominant model. While none of the FTO gene polymorphisms were found to be associated with BC, the frequencies of rs9939609 A allele and rs7206790 G allele were correlated with body mass index (BMI) in BC patients. ADIPOQ rs1501299 TT genotype, rs2241766 GT genotype, and G allele might be protective against BC in the Turkish population but this conclusion needs to be further verified.

4.
Pathol Oncol Res ; 25(1): 107-114, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28983784

ABSTRACT

Genetic variations in DNA repair genes may affect DNA repair capacity therefore increase risk for cancer. In our study, we evaluted the relation between DNA repair gene polymorphisms XRCC1 rs1799782, rs25487, rs25489; XPC rs2228000, rs2228001; XPD rs1799793, rs13181; XRCC3 rs861539; RAD51B rs10483813, rs1314913 and breast cancer risk for 202 Turkish cases in total, in which 102 patients with breast cancer and 100 controls. Genotyping of the DNA samples was carried out by multiplex PCR and matrix-assisted laser desorption/ionization mass spectrometry with time of flight measurement (MALDI-TOF) using Sequenom MassARRAY 4 analyzer. Genotype and allele distributions were calculated between the groups. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported. rs25487 AA genotype and A allele was found to be increased in the control group (respectively, OR 0.16 95% CI 0.02-1.06, p = 0.058; OR 1.55, 95% CI 1.01-2.36, p = 0.043) and rs861539 T allele was found to be decreased in the patient group (OR 1.53, 95% CI 1.01-2.30, p = 0.049). No association with breast cancer was found for the remaining SNPs. Our findings suggest that XRCC1 rs25487 AA genotype and A allele, XRCC3 rs861539 T allele may have protective effects in breast cancer for Turkish population.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , DNA Repair Enzymes/genetics , Gene Expression Regulation, Neoplastic , Polymorphism, Single Nucleotide , Breast Neoplasms/pathology , Case-Control Studies , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genotype , Humans , Lymphatic Metastasis , Middle Aged , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...