Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(11): 9759-9771, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38820338

ABSTRACT

HER2 overexpression and amplification have been identified as oncogenic drivers, and the development of therapies to treat tumors harboring these markers has received considerable attention. Activation of HER2 signaling and subsequent cell growth can also be induced by HER2 mutations, including the common YVMA insertion in exon 20 within the kinase domain. Enhertu is currently the only approved treatment for HER2 mutant tumors in NSCLC. TKIs tested in this space have suffered from off-target activity, primarily due to EGFRWT inhibition or attenuated activity against HER2 mutants. The goal of this work was to identify a TKI that would provide robust inhibition of oncogenic HER2WT and HER2 mutants while sparing EGFRWT activity. Herein, we describe the development of a potent, covalent inhibitor of HER2WT and the YVMA insertion mutant while providing oral bioavailability and avoiding the inhibition of EGFRWT.


Subject(s)
Protein Kinase Inhibitors , Receptor, ErbB-2 , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Animals , Drug Discovery , Mutation , Cell Line, Tumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mice , Rats , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism
2.
JCI Insight ; 8(22)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991018

ABSTRACT

We previously established that vascular smooth muscle-derived adventitial progenitor cells (AdvSca1-SM) preferentially differentiate into myofibroblasts and contribute to fibrosis in response to acute vascular injury. However, the role of these progenitor cells in chronic atherosclerosis has not been defined. Using an AdvSca1-SM cell lineage tracing model, scRNA-Seq, flow cytometry, and histological approaches, we confirmed that AdvSca1-SM-derived cells localized throughout the vessel wall and atherosclerotic plaques, where they primarily differentiated into fibroblasts, smooth muscle cells (SMC), or remained in a stem-like state. Krüppel-like factor 4 (Klf4) knockout specifically in AdvSca1-SM cells induced transition to a more collagen-enriched fibroblast phenotype compared with WT mice. Additionally, Klf4 deletion drastically modified the phenotypes of non-AdvSca1-SM-derived cells, resulting in more contractile SMC and atheroprotective macrophages. Functionally, overall plaque burden was not altered with Klf4 deletion, but multiple indices of plaque composition complexity, including necrotic core area, macrophage accumulation, and fibrous cap thickness, were reduced. Collectively, these data support that modulation of AdvSca1-SM cells through KLF4 depletion confers increased protection from the development of potentially unstable atherosclerotic plaques.


Subject(s)
Plaque, Atherosclerotic , Mice , Animals , Plaque, Atherosclerotic/pathology , Kruppel-Like Factor 4 , Myocytes, Smooth Muscle/pathology , Stem Cells/pathology , Muscle, Smooth/pathology
3.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37503181

ABSTRACT

We previously established that vascular smooth muscle-derived adventitial progenitor cells (AdvSca1-SM) preferentially differentiate into myofibroblasts and contribute to fibrosis in response to acute vascular injury. However, the role of these progenitor cells in chronic atherosclerosis has not been defined. Using an AdvSca1-SM lineage tracing model, scRNA-Seq, flow cytometry, and histological approaches, we confirmed that AdvSca1-SM cells localize throughout the vessel wall and atherosclerotic plaques, where they primarily differentiate into fibroblasts, SMCs, or remain in a stem-like state. Klf4 knockout specifically in AdvSca1-SM cells induced transition to a more collagen-enriched myofibroblast phenotype compared to WT mice. Additionally, Klf4 depletion drastically modified the phenotypes of non-AdvSca1-SM-derived cells, resulting in more contractile SMCs and atheroprotective macrophages. Functionally, overall plaque burden was not altered with Klf4 depletion, but multiple indices of plaque vulnerability were reduced. Collectively, these data support that modulating the AdvSca1-SM population confers increased protection from the development of unstable atherosclerotic plaques.

4.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-36976650

ABSTRACT

Vascular smooth muscle-derived Sca1+ adventitial progenitor (AdvSca1-SM) cells are tissue-resident, multipotent stem cells that contribute to progression of vascular remodeling and fibrosis. Upon acute vascular injury, AdvSca1-SM cells differentiate into myofibroblasts and are embedded in perivascular collagen and the extracellular matrix. While the phenotypic properties of AdvSca1-SM-derived myofibroblasts have been defined, the underlying epigenetic regulators driving the AdvSca1-SM-to-myofibroblast transition are unclear. We show that the chromatin remodeler Smarca4/Brg1 facilitates AdvSca1-SM myofibroblast differentiation. Brg1 mRNA and protein were upregulated in AdvSca1-SM cells after acute vascular injury, and pharmacological inhibition of Brg1 by the small molecule PFI-3 attenuated perivascular fibrosis and adventitial expansion. TGF-ß1 stimulation of AdvSca1-SM cells in vitro reduced expression of stemness genes while inducing expression of myofibroblast genes that was associated with enhanced contractility; PFI blocked TGF-ß1-induced phenotypic transition. Similarly, genetic knockdown of Brg1 in vivo reduced adventitial remodeling and fibrosis and reversed AdvSca1-SM-to-myofibroblast transition in vitro. Mechanistically, TGF-ß1 promoted redistribution of Brg1 from distal intergenic sites of stemness genes and recruitment to promoter regions of myofibroblast-related genes, which was blocked by PFI-3. These data provide insight into epigenetic regulation of resident vascular progenitor cell differentiation and support that manipulating the AdvSca1-SM phenotype will provide antifibrotic clinical benefits.


Subject(s)
Myofibroblasts , Vascular System Injuries , Humans , Myofibroblasts/metabolism , Transforming Growth Factor beta1/metabolism , Chromatin/metabolism , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , Epigenesis, Genetic , Cell Differentiation , Muscle, Smooth, Vascular , Fibrosis , DNA Helicases/genetics , DNA Helicases/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Cardiovasc Res ; 118(6): 1452-1465, 2022 05 06.
Article in English | MEDLINE | ID: mdl-33989378

ABSTRACT

Cardiovascular diseases are characterized by chronic vascular dysfunction and provoke pathological remodelling events, such as neointima formation, atherosclerotic lesion development, and adventitial fibrosis. While lineage-tracing studies have shown that phenotypically modulated smooth muscle cells (SMCs) are the major cellular component of neointimal lesions, the cellular origins and microenvironmental signalling mechanisms that underlie remodelling along the adventitial vascular layer are not fully understood. However, a growing body of evidence supports a unique population of adventitial lineage-restricted progenitor cells expressing the stem cell marker, stem cell antigen-1 (Sca1; AdvSca1 cells) as important effectors of adventitial remodelling and suggests that they are at least partially responsible for subsequent pathological changes that occur in the media and intima. AdvSca1 cells are being studied in murine models of atherosclerosis, perivascular fibrosis, and neointima formation in response to acute vascular injury. Depending on the experimental conditions, AdvSca1 cells exhibit the capacity to differentiate into SMCs, endothelial cells, chondrocytes, adipocytes, and pro-remodelling cells, such as myofibroblasts and macrophages. These data indicate that AdvSca1 cells may be a targetable cell population to influence the outcomes of pathologic vascular remodelling. Important questions remain regarding the origins of AdvSca1 cells and the essential signalling mechanisms and microenvironmental factors that regulate both maintenance of their stem-like, progenitor phenotype and their differentiation into lineage-specified cell types. Adding complexity to the story, recent data indicate that the collective population of adventitial progenitor cells is likely composed of several smaller, lineage-restricted subpopulations, which are not fully defined by their transcriptomic profile and differentiation capabilities. The aim of this review is to outline the heterogeneity of Sca1+ adventitial progenitor cells, summarize their role in vascular homeostasis and remodelling, and comment on their translational relevance in humans.


Subject(s)
Atherosclerosis , Spinocerebellar Ataxias , Animals , Atherosclerosis/metabolism , Cell Differentiation/genetics , Endothelial Cells/pathology , Fibrosis , Homeostasis , Mice , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology , Stem Cells/metabolism , Vascular Remodeling
6.
JCI Insight ; 5(23)2020 12 03.
Article in English | MEDLINE | ID: mdl-33119549

ABSTRACT

Resident vascular adventitial SCA1+ progenitor (AdvSca1) cells are essential in vascular development and injury. However, the heterogeneity of AdvSca1 cells presents a unique challenge in understanding signaling pathways orchestrating their behavior in homeostasis and injury responses. Using smooth muscle cell (SMC) lineage-tracing models, we identified a subpopulation of AdvSca1 cells (AdvSca1-SM) originating from mature SMCs that undergo reprogramming in situ and exhibit a multipotent phenotype. Here we employed lineage tracing and RNA-sequencing to define the signaling pathways regulating SMC-to-AdvSca1-SM cell reprogramming and AdvSca1-SM progenitor cell phenotype. Unbiased hierarchical clustering revealed that genes related to hedgehog/WNT/beta-catenin signaling were significantly enriched in AdvSca1-SM cells, emphasizing the importance of this signaling axis in the reprogramming event. Leveraging AdvSca1-SM-specific expression of GLI-Kruppel family member GLI1 (Gli1), we generated Gli1-CreERT2-ROSA26-YFP reporter mice to selectively track AdvSca1-SM cells. We demonstrated that physiologically relevant vascular injury or AdvSca1-SM cell-specific Kruppel-like factor 4 (Klf4) depletion facilitated the proliferation and differentiation of AdvSca1-SM cells to a profibrotic myofibroblast phenotype rather than macrophages. Surprisingly, AdvSca1-SM cells selectively contributed to adventitial remodeling and fibrosis but little to neointima formation. Together, these findings strongly support therapeutics aimed at preserving the AdvSca1-SM cell phenotype as a viable antifibrotic approach.


Subject(s)
Kruppel-Like Transcription Factors/metabolism , Vascular Remodeling/genetics , Animals , Arteries/metabolism , Cell Differentiation/genetics , Female , Fibrosis/genetics , Fibrosis/metabolism , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Myofibroblasts/metabolism , Stem Cells/metabolism , Vascular Remodeling/physiology , Wnt Signaling Pathway
7.
Arterioscler Thromb Vasc Biol ; 40(8): 1854-1869, 2020 08.
Article in English | MEDLINE | ID: mdl-32580634

ABSTRACT

OBJECTIVE: Our recent work demonstrates that PTEN (phosphatase and tensin homolog) is an important regulator of smooth muscle cell (SMC) phenotype. SMC-specific PTEN deletion promotes spontaneous vascular remodeling and PTEN loss correlates with increased atherosclerotic lesion severity in human coronary arteries. In mice, PTEN overexpression reduces plaque area and preserves SMC contractile protein expression in atherosclerosis and blunts Ang II (angiotensin II)-induced pathological vascular remodeling, suggesting that pharmacological PTEN upregulation could be a novel therapeutic approach to treat vascular disease. Approach and Results: To identify novel PTEN activators, we conducted a high-throughput screen using a fluorescence based PTEN promoter-reporter assay. After screening ≈3400 compounds, 11 hit compounds were chosen based on level of activity and mechanism of action. Following in vitro confirmation, we focused on 5-azacytidine, a DNMT1 (DNA methyltransferase-1) inhibitor, for further analysis. In addition to PTEN upregulation, 5-azacytidine treatment increased expression of genes associated with a differentiated SMC phenotype. 5-Azacytidine treatment also maintained contractile gene expression and reduced inflammatory cytokine expression after PDGF (platelet-derived growth factor) stimulation, suggesting 5-azacytidine blocks PDGF-induced SMC de-differentiation. However, these protective effects were lost in PTEN-deficient SMCs. These findings were confirmed in vivo using carotid ligation in SMC-specific PTEN knockout mice treated with 5-azacytidine. In wild type controls, 5-azacytidine reduced neointimal formation and inflammation while maintaining contractile protein expression. In contrast, 5-azacytidine was ineffective in PTEN knockout mice, indicating that the protective effects of 5-azacytidine are mediated through SMC PTEN upregulation. CONCLUSIONS: Our data indicates 5-azacytidine upregulates PTEN expression in SMCs, promoting maintenance of SMC differentiation and reducing pathological vascular remodeling in a PTEN-dependent manner.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , High-Throughput Screening Assays/methods , PTEN Phosphohydrolase/physiology , Vascular Remodeling/drug effects , Animals , Azacitidine/pharmacology , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , PTEN Phosphohydrolase/genetics , Platelet-Derived Growth Factor/pharmacology , Promoter Regions, Genetic
8.
Arterioscler Thromb Vasc Biol ; 40(2): 394-403, 2020 02.
Article in English | MEDLINE | ID: mdl-31852223

ABSTRACT

OBJECTIVE: Pathological vascular remodeling and excessive perivascular fibrosis are major contributors to reduced vessel compliance that exacerbates cardiovascular diseases, for instance, promoting clinically relevant myocardial remodeling. Inflammation plays a significant role in both pathological vascular remodeling and fibrosis. We previously demonstrated that smooth muscle cell-specific PTEN depletion promotes significant vascular fibrosis and accumulation of inflammatory cells. In the current study, we aimed to determine the beneficial role of systemic PTEN elevation on Ang II (angiotensin II)-induced vascular fibrosis and remodeling. Approach and Results: Transgenic mice carrying additional copies of the wild-type Pten gene (super PTEN [sPTEN]) and WT littermates were subjected to Ang II or saline infusion for 14 or 28 days. Compared with WT, Ang II-induced vascular fibrosis was significantly blunted in sPTEN mice, as shown by histochemical stainings and label-free second harmonic generation imaging. The protection against Ang II was recapitulated in sPTEN mice bearing WT bone marrow but not in WT mice reconstituted with sPTEN bone marrow. Ang II-induced elevation of profibrotic and proinflammatory gene expression observed in WT mice was blocked in aortic tissue of sPTEN mice. Immunofluorescent staining and flow cytometry both indicated that perivascular infiltration of T cells and macrophages was significantly inhibited in sPTEN mice. In vitro induction of PTEN expression suppressed Ang II-induced Ccl2 expression in vascular smooth muscle cells. CONCLUSIONS: Systemic PTEN elevation mediates protection against Ang II-induced vascular inflammation and fibrosis predominantly through effects in resident vascular cells. Our data highly support that pharmacological upregulation of PTEN could be a novel and viable approach for the treatment of pathological vascular fibrosis.


Subject(s)
Gene Expression Regulation , Muscle, Smooth, Vascular/metabolism , PTEN Phosphohydrolase/genetics , Vascular Diseases/genetics , Vascular Remodeling/genetics , Angiotensin II/toxicity , Animals , Blotting, Western , Cells, Cultured , Disease Models, Animal , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Flow Cytometry , Male , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/pathology , PTEN Phosphohydrolase/biosynthesis , RNA/genetics , Rats , Vascular Diseases/metabolism , Vascular Diseases/pathology
9.
PLoS One ; 11(4): e0153750, 2016.
Article in English | MEDLINE | ID: mdl-27097013

ABSTRACT

This study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47-48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR<0.1 and fold-change A/U>1.3 or <0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens.


Subject(s)
Chickens/metabolism , Metabolome , Oxidative Stress , Poultry Diseases/metabolism , Amino Acids/metabolism , Animals , Carbohydrate Metabolism , Glycogen/metabolism , Lipid Metabolism , Metabolomics , Muscles/metabolism , Nucleotides/metabolism
10.
BMC Genomics ; 16: 399, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25994290

ABSTRACT

BACKGROUND: Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably "hard" or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as "Wooden Breast", through the use of RNA-sequencing technology. METHODS: We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. RESULTS: Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested "Diseases and Disorders" such as connective tissue disorders, "Molecular and Cellular Functions" such as cellular assembly and organization, cellular function and maintenance, and cellular movement, "Physiological System Development and Function" such as tissue development, and embryonic development, and "Top Canonical Pathways" such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. CONCLUSIONS: There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease.


Subject(s)
Gene Expression Profiling/methods , Muscular Diseases/veterinary , Poultry Diseases/genetics , Sequence Analysis, RNA/methods , Animals , Chickens , Gene Expression Profiling/veterinary , Gene Expression Regulation , Gene Regulatory Networks , Genetic Association Studies/veterinary , Male , Muscular Diseases/genetics , Sequence Analysis, RNA/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...