Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
2.
Methods Mol Biol ; 2664: 123-134, 2023.
Article in English | MEDLINE | ID: mdl-37423986

ABSTRACT

Renal fibrosis is a hallmark of progressive renal diseases. To date, there is a lack of effective therapeutics for the treatment of renal fibrosis, in part due to the scarcity of clinically relevant translational disease models. Since the early 1920s, hand-cut tissue slices have been used as a means to better understand organ (patho)physiology in a variety of scientific fields. From that time, the equipment and methodology for the preparation of tissue slices has continuously improved, thereby expanding the applicability of the model. Nowadays, precision-cut kidney slices (PCKS) have been demonstrated to be an extremely valuable translation model for renal (patho)physiology, bridging the gap between preclinical and clinical research. A key feature of PCKS is that the slices contain all cell types and acellular components of the whole organ in the original configuration while preserving cell-cell and cell-matrix interactions. In this chapter, we describe how to prepare PCKS and how the model can be implemented in fibrosis research.


Subject(s)
Kidney Diseases , Kidney , Humans , Kidney/metabolism , Kidney Diseases/metabolism , Fibrosis
3.
Physiol Rev ; 103(4): 2827-2872, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37440209

ABSTRACT

The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.


Subject(s)
Renal Insufficiency, Chronic , Ureteral Obstruction , Humans , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Kidney/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Hemodynamics , Fibrosis , Disease Models, Animal
4.
BMC Res Notes ; 16(1): 119, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365638

ABSTRACT

OBJECTIVE: Glomerular filtration rate (GFR) is a key indicator of renal function. In both clinical practice and pre-clinical research, serum levels of endogenous filtration markers, such as creatinine, are often used to estimate GFR. However, these markers often do not reflect minor changes in renal function. In this study, we therefore set out to evaluate the applicability of transcutaneous GFR (tGFR) measurements to monitor the changes in renal function, as compared to plasma creatinine (pCreatinine), in two models of obstructive nephropathy, namely unilateral ureteral obstruction (UUO) or bilateral ureteral obstruction followed by release (BUO-R) in male Wistar rats. RESULTS: UUO animals showed a significant reduction in tGFR compared to baseline; whereas pCreatinine levels were not significantly changed. In BUO animals, tGFR drops 24 h post BUO and remains lower upon release of the obstruction until day 11. Concomitantly, pCreatinine levels were also increased 24 h after obstruction and 24 h post release, however after 4 days, pCreatinine returned to baseline levels. In conclusion, this study revealed that the tGFR method is superior at detecting minor changes in renal function as compared to pCreatinine measurements.


Subject(s)
Kidney Diseases , Ureteral Obstruction , Rats , Animals , Male , Kidney/physiology , Rodentia , Creatinine , Rats, Wistar , Glomerular Filtration Rate
5.
BMC Res Notes ; 16(1): 39, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941637

ABSTRACT

OBJECTIVE: Renal fibrosis is one of the main pathophysiological processes underlying the progression of chronic kidney disease and kidney allograft failure. In the past decades, overwhelming efforts have been undertaken to find druggable targets for the treatment of renal fibrosis, mainly using cell- and animal models. However, the latter often do not adequately reflect human pathogenesis, obtained results differ per strain within a given species, and the models are associated with considerable discomfort for the animals. Therefore, the objective of this study is to implement the 3Rs in renal fibrosis research by establishing an animal-free drug screening platform for renal fibrosis based on human precision-cut kidney slices (PCKS) and by limiting the use of reagents that are associated with significant animal welfare concerns. RESULTS: Using Western blotting and gene expression arrays, we show that transforming growth factor-ß (TGF-ß) induced fibrosis in human PCKS. In addition, our results demonstrated that butaprost, SC-19220 and tamoxifen - all putative anti-fibrotic compounds - altered TGF-ß-induced pro-fibrotic gene expression in human PCKS. Moreover, we observed that all compounds modulated fairly distinct sets of genes, however they all impacted TGF-ß/SMAD signaling. In conclusion, this study revealed that it is feasible to use an animal-free approach to test drug efficacy and elucidate mechanisms of action.


Subject(s)
Drug Evaluation, Preclinical , Kidney Diseases , Renal Insufficiency, Chronic , Animals , Humans , Drug Evaluation, Preclinical/methods , Fibrosis , Kidney/pathology , Kidney Diseases/drug therapy , Transforming Growth Factor beta/genetics , Animal Testing Alternatives
6.
Kidney Res Clin Pract ; 41(1): 4-13, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35108767

ABSTRACT

Prostaglandin E2 (PGE2), a lipid mediator produced by the cyclooxygenase enzyme system, is the main prostaglandin in the kidney. PGE2 is involved in various physiological and pathophysiological processes in the kidney, including renal hemodynamics, water and salt balance, and renal fibrosis-a key pathological feature of progressive kidney diseases. PGE2 functions by binding to four G-protein-coupled EP receptors (EP1 to EP4), which stimulate different intracellular signaling pathways. The intrarenal distribution of the four EP receptors as well as the different downstream signaling pathways associated with each receptor give rise to the distinct functional consequence of activating each receptor subtype. This review summarizes the current data on the renal expression of the four EP receptors and delineates the role of each receptor in renal fibrosis.

7.
Acta Physiol (Oxf) ; 234(3): e13780, 2022 03.
Article in English | MEDLINE | ID: mdl-34989478

ABSTRACT

AIM: Renal fibrosis is a major driver of chronic kidney disease, yet current treatment strategies are ineffective in attenuating fibrogenesis. The cyclooxygenase/prostaglandin system plays a key role in renal injury and holds great promise as a therapeutic target. Here, we used a translational approach to evaluate the role of the PGE2 -EP1 receptor in the pathogenesis of renal fibrosis in several models of kidney injury, including human (fibrotic) kidney slices. METHODS: The anti-fibrotic efficacy of a selective EP1 receptor antagonist (SC-19220) was studied in mice subjected to unilateral ureteral obstruction (UUO), healthy and fibrotic human precision-cut kidney slices (PCKS), Madin-Darby Canine Kidney (MDCK) cells and primary human renal fibroblasts (HRFs). Fibrosis was evaluated on gene and protein level using qPCR, western blot and immunostaining. RESULTS: EP1 receptor inhibition diminished fibrosis in UUO mice, illustrated by a decreased protein expression of fibronectin (FN) and α-smooth muscle actin (αSMA) and a reduction in collagen deposition. Moreover, treatment of healthy human PCKS with SC-19220 reduced TGF-ß-induced fibrosis as shown by decreased expression of collagen 1A1, FN and αSMA as well as reduced collagen deposition. Similar observations were made using fibrotic human PCKS. In addition, SC-19220 reduced TGF-ß-induced FN expression in MDCK cells and HRFs. CONCLUSION: This study highlights the EP1 receptor as a promising target for preventing both the onset and late stage of renal fibrosis. Moreover, we provide strong evidence that the effect of SC-19220 may translate to clinical care since its effects were observed in UUO mice, cells and human kidney slices.


Subject(s)
Kidney Diseases , Ureteral Obstruction , Animals , Collagen , Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide , Disease Models, Animal , Dogs , Female , Fibrosis , Humans , Kidney/metabolism , Kidney Diseases/metabolism , Male , Mice , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/therapeutic use , Ureteral Obstruction/metabolism
9.
Biomedicines ; 9(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34440060

ABSTRACT

Chronic kidney disease (CKD) is a major global health concern and renal fibrosis is an integral part of the pathophysiological mechanism underlying disease progression. In CKD patients, the majority of metabolic pathways are in disarray and perturbations in enzyme activity most likely contribute to the wide variety of comorbidities observed in these patients. To illustrate, catabolism of tryptophan by indoleamine 2,3-dioxygenase (IDO) gives rise to numerous biologically active metabolites implicated in CKD progression. Here, we evaluated the effect of antagonizing IDO on renal fibrogenesis. To this end, we antagonized IDO using 1-methyl-D-tryptophan (1-MT) and BMS-98620 in TGF-ß-treated murine precision-cut kidney slices (mPCKS) and in mice subjected to unilateral ureteral obstruction (UUO). The fibrotic response was evaluated on both the gene and protein level using qPCR and western blotting. Our results demonstrated that treatment with 1-MT or BMS-985205 markedly reduced TGF-ß-mediated fibrosis in mPCKS, as seen by a decreased expression of collagen type 1, fibronectin, and α-smooth muscle actin. Moreover, IDO protein expression clearly increased following UUO, however, treatment of UUO mice with either 1-MT or BMS-986205 did not significantly affect the gene and protein expression of the tested fibrosis markers. However, both inhibitors significantly reduced the renal deposition of collagen in UUO mice as shown by Sirius red and trichrome staining. In conclusion, this study demonstrates that IDO antagonism effectively mitigates fibrogenesis in mPCKS and reduces renal collagen accumulation in UUO mice. These findings warrant further research into the clinical application of IDO inhibitors for the treatment of renal fibrosis.

10.
Biomed Pharmacother ; 133: 111003, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33227702

ABSTRACT

BACKGROUND AND PURPOSE: Renal fibrosis plays an important role in the development and progression of chronic kidney disease (CKD). Clinical studies have shown that CKD progresses differently in males and females, which may be related to circulating levels of sex hormones. In this study, we investigated the effect of tamoxifen (TAM), a selective estrogen receptor modulator (SERM), on renal fibrosis in male and female rats subjected to unilateral ureteral obstruction (UUO) and human precision-cut kidney slices (PCKS). EXPERIMENTAL APPROACH: Female, ovariectomized female (OVX), and male rats were subjected to 7 days of UUO and treated with TAM by oral gavage. Moreover, we studied individual responses to TAM treatment in PCKS prepared from female and male patients. In all models, the expression of fibrosis markers was examined by western blot, qPCR, and immunohistochemistry. KEY RESULTS: TAM decreased the expression of fibronectin, α-smooth muscle actin, and collagen-1 and -3 in female, OVX, and male rats. In addition, TAM mitigated TGF-ß-induced fibrosis in human PCKS, irrespective of sex, yet interindividual differences in treatment response were observed. CONCLUSION AND IMPLICATIONS: TAM ameliorates renal fibrosis in males and females, although we did observe sex differences in drug response. These findings warrant further research into the clinical applicability of TAM, or other SERMs, for the personalized treatment of renal disease.


Subject(s)
Kidney Diseases/prevention & control , Kidney/drug effects , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology , Ureteral Obstruction/drug therapy , Aged , Animals , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Fibrosis , Humans , In Vitro Techniques , Kidney/metabolism , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Middle Aged , Ovariectomy , Rats, Wistar , Sex Factors , Ureteral Obstruction/complications
11.
Toxicol In Vitro ; 67: 104920, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32590029

ABSTRACT

Gut microbiota can impact liver disease development via the gut-liver axis. Liver inflammation is a shared pathological event in various liver diseases and gut microbiota might influence this pathological process. In this study, we studied the influence of gut microbiota on the inflammatory response of the liver to lipopolysaccharide (LPS). The inflammatory response to LPS (1-10 µg/ml) of livers of specific-pathogen-free (SPF) or germ-free (GF) mice was evaluated ex vivo, using precision-cut liver slices (PCLS). LPS induced a more pronounced inflammatory response in GF PCLS than in SPF PCLS. Baseline TNF-α gene expression was significantly higher in GF slices as compared to SPF slices. LPS treatment induced TNF-α, IL-1ß, IL-6 and iNOS expression in both SPF and GF PCLS, but the increase was more intense in GF slices. The anti-inflammatory markers SOCS3 and IRAK-M gene expression was significantly higher in GF PCLS than SPF PCLS at 24h with 1 µg/ml LPS treatment, and IL-10 was not differently expressed in GF PCLS than SPF PCLS. In addition, TLR-4 mRNA, but not protein, at basal level was higher in GF slices than in SPF slices. Taken together, this study shows that, in mice, the host microbiota attenuates the pro-inflammatory impact of LPS in the liver, indicating a positive role of the gut microbiota on the immune homeostasis of the liver.


Subject(s)
Lipopolysaccharides/pharmacology , Liver/drug effects , Microbiota , Animals , Cytokines/genetics , Cytokines/immunology , Germ-Free Life , Inflammation/genetics , Inflammation/immunology , Interleukin-1 Receptor-Associated Kinases/genetics , Liver/immunology , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
12.
Pharmaceutics ; 12(5)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443499

ABSTRACT

Animal models are a valuable tool in preclinical research. However, limited predictivity of human biological responses in the conventional models has stimulated the search for reliable preclinical tools that show translational robustness. Here, we used precision-cut kidney slices (PCKS) as a model of renal fibrosis and investigated its predictive capacity for screening the effects of anti-fibrotics. Murine and human PCKS were exposed to TGFß or PDGF pathway inhibitors with established anti-fibrotic efficacy. For each treatment modality, we evaluated whether it affected: (1) culture-induced collagen type I gene expression and interstitial accumulation; (2) expression of markers of TGFß and PDGF signaling; and (3) expression of inflammatory markers. We summarized the outcomes of published in vivo animal and human studies testing the three inhibitors in renal fibrosis, and drew a parallel to the PCKS data. We showed that the responses of murine PCKS to anti-fibrotics highly corresponded with the known in vivo responses observed in various animal models of renal fibrosis. Moreover, our results suggested that human PCKS can be used to predict drug efficacy in clinical trials. In conclusion, our study demonstrated that the PCKS model is a powerful predictive tool for ex vivo screening of putative drugs for renal fibrosis.

13.
Pharmaceutics ; 12(4)2020 03 26.
Article in English | MEDLINE | ID: mdl-32224876

ABSTRACT

Phenformin and metformin are antihyperglycemic drugs that belong to the class of biguanides. Previously, we demonstrated that metformin elicits renoprotective effects in unilateral ureteral obstructed mice by reducing the infiltration of immune cells into the kidney. Since phenformin is a more potent drug as compared to metformin, we investigated the renoprotective properties of phenformin. We studied the efficacy of both drugs using mice that underwent unilateral ureteral obstruction. Renal damage was evaluated on RNA and protein level by qPCR, Western blotting, and immunohistochemistry. Moreover, we studied immune cell infiltration using flow cytometry. Both biguanides significantly reduced UUO-induced kidney injury, as illustrated by a reduction in KIM-1 protein expression. In addition, both metformin and phenformin impacted the gene expression of several inflammatory markers but to a different extent. Moreover, in contrast to metformin, phenformin did not impact immune cell infiltration into UUO kidneys. In conclusion, we demonstrated that phenformin has similar renoprotective effects as metformin, but the mechanism of action differs, and phenformin is more potent. The beneficial effects of phenformin are probably due to inhibition of the STAT3 pathway and mitochondrial complex I. Further research is needed to unveil the therapeutic potential of phenformin for the treatment of renal injury, either at low, non-toxic concentrations or as part of a combination therapy.

14.
Vitam Horm ; 112: 243-264, 2020.
Article in English | MEDLINE | ID: mdl-32061343

ABSTRACT

Estrogens are primarily identified as sex hormones that, for a long time, have been known as important regulators of female reproductive physiology. However, our understanding of the role of estrogens has changed over the past years. It is now well accepted that estrogens are also involved in other physiological and pathological processes in both genders. This is due to the fact that estrogen can act both local as well as on a systemic level. Next to its role in reproductive physiology, there is accumulating evidence that estrogen influences multiple systems involved in water homeostasis. This chapter will delineate the regulatory effects of estrogen on the water channel aquaporin-2 (AQP2) found in the renal collecting duct. We will first provide an introduction to estrogen, the estrogen receptors and their role in renal physiology as well as describe the effect of selective estrogen receptor modulators (SERMs) on the kidney. Subsequently, we will focus on how estrogen and SERMs influence water balance and regulate AQP2 expression in principal cells of the collecting duct. Finally, we will describe how estrogen regulates AQP2 functionality in other organ systems.


Subject(s)
Aquaporin 2 , Estrogens , Homeostasis , Water-Electrolyte Balance , Animals , Aquaporin 2/metabolism , Estrogens/metabolism , Humans , Kidney/metabolism , Water-Electrolyte Balance/physiology
15.
Med Res Rev ; 40(1): 9-26, 2020 01.
Article in English | MEDLINE | ID: mdl-31104334

ABSTRACT

Cleft lip with or without cleft palate is a congenital deformity that occurs in about 1 of 700 newborns, affecting the dentition, bone, skin, muscles and mucosa in the orofacial region. A cleft can give rise to problems with maxillofacial growth, dental development, speech, and eating, and can also cause hearing impairment. Surgical repair of the lip may lead to impaired regeneration of muscle and skin, fibrosis, and scar formation. This may result in hampered facial growth and dental development affecting oral function and lip and nose esthetics. Therefore, secondary surgery to correct the scar is often indicated. We will discuss the molecular and cellular pathways involved in facial and lip myogenesis, muscle anatomy in the normal and cleft lip, and complications following surgery. The aim of this review is to outline a novel molecular and cellular strategy to improve musculature and skin regeneration and to reduce scar formation following cleft repair. Orofacial clefting can be diagnosed in the fetus through prenatal ultrasound screening and allows planning for the harvesting of umbilical cord blood stem cells upon birth. Tissue engineering techniques using these cord blood stem cells and molecular targeting of inflammation and fibrosis during surgery may promote tissue regeneration. We expect that this novel strategy improves both muscle and skin regeneration, resulting in better function and esthetics after cleft repair.


Subject(s)
Cleft Lip/surgery , Fetal Blood/cytology , Inflammation/therapy , Muscles/pathology , Regeneration , Skin/pathology , Stem Cells/cytology , Tissue Engineering , Cleft Lip/physiopathology , Fibrosis , Humans
16.
Biochim Biophys Acta Mol Basis Dis ; 1866(1): 165582, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31676376

ABSTRACT

Fibrosis is the hallmark of pathologic tissue remodelling in most chronic diseases. Despite advances in our understanding of the mechanisms of fibrosis, it remains uncured. Fibrogenic processes share conserved core cellular and molecular pathways across organs. In this study, we aimed to elucidate shared and organ-specific features of fibrosis using murine precision-cut tissue slices (PCTS) prepared from small intestine, liver and kidneys. PCTS displayed substantial differences in their baseline gene expression profiles: 70% of the extracellular matrix (ECM)-related genes were differentially expressed across the organs. Culture for 48 h induced significant changes in ECM regulation and triggered the onset of fibrogenesis in all PCTS in organ-specific manner. TGFß signalling was activated during 48 h culture in all PCTS. However, the degree of its involvement varied: both canonical and non-canonical TGFß pathways were activated in liver and kidney slices, while only canonical, Smad-dependent, cascade was involved in intestinal slices. The treatment with galunisertib blocked the TGFßRI/SMAD2 signalling in all PCTS, but attenuated culture-induced dysregulation of ECM homeostasis and mitigated the onset of fibrogenesis with organ-specificity. In conclusion, regardless the many common features in pathophysiology of organ fibrosis, PCTS displayed diversity in culture-induced responses and in response to the treatment with TGFßRI kinase inhibitor galunisertib, even though it targets a core fibrosis pathway. A clear understanding of the common and organ-specific features of fibrosis is the basis for developing novel antifibrotic therapies.


Subject(s)
Fibrosis/pathology , Liver Cirrhosis/pathology , Liver/pathology , Animals , Fibrosis/drug therapy , Fibrosis/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Mice , Mice, Inbred C57BL , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Quinolines/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Smad2 Protein/metabolism , Transforming Growth Factor beta/metabolism
17.
Am J Physiol Renal Physiol ; 318(1): F117-F134, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31736352

ABSTRACT

Poor translation from animal studies to human clinical trials is one of the main hurdles in the development of new drugs. Here, we used precision-cut kidney slices (PCKS) as a translational model to study renal fibrosis and to investigate whether inhibition of tyrosine kinase receptors, with the selective inhibitor nintedanib, can halt fibrosis in murine and human PCKS. We used renal tissue of murine and human origins to obtain PCKS. Control slices and slices treated with nintedanib were studied to assess viability, activation of tyrosine kinase receptors, cell proliferation, collagen type I accumulation, and gene and protein regulation. During culture, PCKS spontaneously develop a fibrotic response that resembles in vivo fibrogenesis. Nintedanib blocked culture-induced phosphorylation of platelet-derived growth factor receptor and vascular endothelial growth factor receptor. Furthermore, nintedanib inhibited cell proliferation and reduced collagen type I accumulation and expression of fibrosis-related genes in healthy murine and human PCKS. Modulation of extracellular matrix homeostasis was achieved already at 0.1 µM, whereas high concentrations (1 and 5 µM) elicited possible nonselective effects. In PCKS from human diseased renal tissue, nintedanib showed limited capacity to reverse established fibrosis. In conclusion, nintedanib attenuated the onset of fibrosis in both murine and human PCKS by inhibiting the phosphorylation of tyrosine kinase receptors; however, the reversal of established fibrosis was not achieved.


Subject(s)
Fibrosis/drug therapy , Indoles/pharmacology , Kidney Diseases/drug therapy , Kidney/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Cell Proliferation/drug effects , Disease Progression , Fibrosis/pathology , Humans , Indoles/therapeutic use , Kidney/pathology , Kidney Diseases/pathology , Mice , Phosphorylation/drug effects , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects
18.
Toxicol In Vitro ; 59: 312-321, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31158490

ABSTRACT

Precision-cut intestinal slices (PCIS) is an ex vivo culture technique that found its applications in toxicology, drug transport and drug metabolism testing, as well as in fibrosis research. The main limiting factor of PCIS as experimental model is the relatively short viability of tissue slices. Here, we describe a strategy for extending the life-span of PCIS during culture using medium that is routinely used for growing intestinal organoids. Mouse and rat PCIS cultured in standard medium progressively showed low ATP/protein content and severe tissue degradation, indicating loss of tissue viability. In turn, organoid medium, containing epithelial growth factor (EGF), Noggin and R-spondin, maintained significantly higher ATP/protein levels and better preserved intestinal architecture of mouse PCIS at 96 h. In contrast, organoid medium that additionally contained Wnt, had a clear positive effect on the ATP content of rat PCIS during 24 h of culture, but not on slice histomorphology. Our proof-of-concept study provides early evidence that employing organoid medium for PCIS culture improved tissue viability during extended incubation. Enabling lasting PCIS cultures will greatly widen their range of applications in predicting long-term intestinal toxicity of xenobiotics and elucidating their mechanism of action, among others.


Subject(s)
Intestines , Tissue Culture Techniques , Adenosine Triphosphate , Animals , Carrier Proteins/pharmacology , Culture Media, Conditioned/pharmacology , Epidermal Growth Factor/pharmacology , Male , Mice, Inbred C57BL , Rats, Wistar , Stem Cell Niche , Thrombospondins/genetics , Wnt3A Protein/pharmacology
19.
Acta Physiol (Oxf) ; 227(1): e13291, 2019 09.
Article in English | MEDLINE | ID: mdl-31054202

ABSTRACT

AIM: Renal fibrosis plays a pivotal role in the development and progression of chronic kidney disease, which affects 10% of the adult population. Previously, it has been demonstrated that the cyclooxygenase-2 (COX-2)/prostaglandin (PG) system influences the progression of renal injury. Here, we evaluated the impact of butaprost, a selective EP2 receptor agonist, on renal fibrosis in several models of kidney injury, including human tissue slices. METHODS: We studied the anti-fibrotic efficacy of butaprost using Madin-Darby Canine Kidney (MDCK) cells, mice that underwent unilateral ureteral obstruction and human precision-cut kidney slices. Fibrogenesis was evaluated on a gene and protein level by qPCR and Western blotting. RESULTS: Butaprost (50 µM) reduced TGF-ß-induced fibronectin (FN) expression, Smad2 phosphorylation and epithelial-mesenchymal transition in MDCK cells. In addition, treatment with 4 mg/kg/day butaprost attenuated the development of fibrosis in mice that underwent unilateral ureteral obstruction surgery, as illustrated by a reduction in the gene and protein expression of α-smooth muscle actin, FN and collagen 1A1. More importantly, a similar anti-fibrotic effect of butaprost was observed in human precision-cut kidney slices exposed to TGF-ß. The mechanism of action of butaprost appeared to be a direct effect on TGF-ß/Smad signalling, which was independent of the cAMP/PKA pathway. CONCLUSION: In conclusion, this study demonstrates that stimulation of the EP2 receptor effectively mitigates renal fibrogenesis in various fibrosis models. These findings warrant further research into the clinical application of butaprost, or other EP2 agonists, for the inhibition of renal fibrosis.


Subject(s)
Alprostadil/analogs & derivatives , Fibrosis/drug therapy , Kidney Diseases/metabolism , Kidney/drug effects , Receptors, Prostaglandin E, EP2 Subtype/agonists , Aged , Alprostadil/pharmacology , Animals , Cell Line , Dogs , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Kidney/pathology , Kidney Diseases/pathology , MART-1 Antigen , Male , Mice , Mice, Inbred C57BL , Tissue Culture Techniques , Ureteral Obstruction , Urological Agents/pharmacology
20.
Nutrients ; 11(3)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818824

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder closely related to metabolic syndrome. NAFLD can progress to an inflammatory state called non-alcoholic steatohepatitis (NASH), which may result in the development of fibrosis and hepatocellular carcinoma. To develop therapeutic strategies against NAFLD, a better understanding of the molecular mechanism is needed. Current in vitro NAFLD models fail to capture the essential interactions between liver cell types and often do not reflect the pathophysiological status of patients. To overcome limitations of commonly used in vitro and in vivo models, precision-cut liver slices (PCLSs) were used in this study. PCLSs, prepared from liver tissue obtained from male Wistar rats, were cultured in supraphysiological concentrations of glucose, fructose, insulin, and palmitic acid to mimic metabolic syndrome. Accumulation of lipid droplets was visible and measurable after 24 h in PCLSs incubated with glucose, fructose, and insulin, both in the presence and absence of palmitic acid. Upregulation of acetyl-CoA carboxylase 1 and 2, and of sterol responsive element binding protein 1c, suggests increased de novo lipogenesis in PCLSs cultured under these conditions. Additionally, carnitine palmitoyltransferase 1 expression was reduced, which indicates impaired fatty acid transport and disrupted mitochondrial ß-oxidation. Thus, steatosis was successfully induced in PCLSs with modified culture medium. This novel ex vivo NAFLD model could be used to investigate the multicellular and molecular mechanisms that drive NAFLD development and progression, and to study potential anti-steatotic drugs.


Subject(s)
Liver/physiopathology , Non-alcoholic Fatty Liver Disease/pathology , Tissue Culture Techniques , Animals , Culture Media , Endoplasmic Reticulum Stress , Inflammation/metabolism , Liver Cirrhosis , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...