Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
J Virol ; 98(6): e0057624, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38767375

ABSTRACT

Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE: Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Viral Envelope Proteins , Viral Proteins , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Humans , Animals , Mice , Viral Proteins/metabolism , Viral Proteins/genetics , Sarcoma, Kaposi/virology , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Cell Line , Castleman Disease/virology , Castleman Disease/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , HEK293 Cells , Endothelial Cells/virology
3.
Infect Agent Cancer ; 17(1): 44, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35945577

ABSTRACT

BACKGROUND: Human papillomavirus (HPV) is the primary cause of invasive cervical cancer (ICC). The prevalence of various HPV genotypes, ranging from oncogenically low- to high-risk, may be influenced by geographic and demographic factors, which could have critical implications for the screening and prevention of HPV infection and ICC incidence. However, many technical factors may influence the identification of high-risk genotypes associated with ICC in different populations. METHODS: We used high-throughput sequencing of a single amplicon within the HPV L1 gene to assess the influence of patient age, race/ethnicity, histological subtype, sample type, collection date, experimental factors, and computational parameters on the prevalence of HPV genotypes detected in archived DNA (n = 34), frozen tissue (n = 44), and formalin-fixed paraffin-embedded (FFPE) tissue (n = 57) samples collected in the Los Angeles metropolitan area. RESULTS: We found that the percentage of off-target human reads and the concentration of DNA amplified from each sample varied by HPV genotype and by archive type. After accounting for the percentage of human reads and excluding samples with especially low levels of amplified DNA, the HPV prevalence was 95% across all ICC samples: HPV16 was the most common genotype (in 56% of all ICC samples), followed by HPV18 (in 21%). Depending upon the genotyping parameters, the prevalence of HPV58 varied up to twofold in our cohort. In archived DNA and frozen tissue samples, we detected previously established differences in HPV16 and HPV18 frequencies based on histological subtype, but we could not reproduce those findings using our FFPE samples. CONCLUSIONS: In this pilot study, we demonstrate that sample collection, preparation, and analysis methods can influence the detection of certain HPV genotypes and must be carefully considered when drawing any biological conclusions based on HPV genotyping data from ICC samples.

4.
Front Immunol ; 13: 867918, 2022.
Article in English | MEDLINE | ID: mdl-35493498

ABSTRACT

Background: Epstein-Barr virus (EBV) is the causal agent of infectious mononucleosis and has been associated with various cancers and autoimmune diseases. Despite decades of research efforts to combat this major global health burden, there is no approved prophylactic vaccine against EBV. To facilitate the rational design and assessment of an effective vaccine, we systematically reviewed pre-clinical and clinical prophylactic EBV vaccine studies to determine the antigens, delivery platforms, and animal models used in these studies. Methods: We searched Cochrane Library, ClinicalTrials.gov, Embase, PubMed, Scopus, Web of Science, WHO's Global Index Medicus, and Google Scholar from inception to June 20, 2020, for EBV prophylactic vaccine studies focused on humoral immunity. Results: The search yielded 5,614 unique studies. 36 pre-clinical and 4 clinical studies were included in the analysis after screening against the exclusion criteria. In pre-clinical studies, gp350 was the most commonly used immunogen (33 studies), vaccines were most commonly delivered as monomeric proteins (12 studies), and mice were the most used animal model to test immunogenicity (15 studies). According to an adaptation of the CAMARADES checklist, 4 pre-clinical studies were rated as very high, 5 as high, 13 as moderate quality, 11 as poor, and 3 as very poor. In clinical studies, gp350 was the sole vaccine antigen, delivered in a vaccinia platform (1 study) or as a monomeric protein (3 studies). The present study was registered in PROSPERO (CRD42020198440). Conclusions: Four major obstacles have prevented the development of an effective prophylactic EBV vaccine: undefined correlates of immune protection, lack of knowledge regarding the ideal EBV antigen(s) for vaccination, lack of an appropriate animal model to test vaccine efficacy, and lack of knowledge regarding the ideal vaccine delivery platform. Our analysis supports a multivalent antigenic approach including two or more of the five main glycoproteins involved in viral entry (gp350, gB, gH/gL, gp42) and a multimeric approach to present these antigens. We anticipate that the application of two underused challenge models, rhesus macaques susceptible to rhesus lymphocryptovirus (an EBV homolog) and common marmosets, will permit the establishment of in vivo correlates of immune protection and attainment of more generalizable data. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=198440, identifier PROSPERO I.D. CRD4202019844.


Subject(s)
Epstein-Barr Virus Infections , Infectious Mononucleosis , Animals , Disease Models, Animal , Herpesvirus 4, Human , Macaca mulatta , Mice , Serologic Tests
5.
Vaccines (Basel) ; 8(2)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268575

ABSTRACT

Primary infection with Epstein-Barr virus (EBV) is associated with acute infectious mononucleosis, whereas persistent infection is associated with chronic diseases such as autoimmune diseases and various types of cancer. Indeed, approximately 2% of all new cancer cases occurring annually worldwide are EBV-associated. Currently, there is no licensed EBV prophylactic vaccine. Selection of appropriate viral protein subunits is critical for development of an effective vaccine. Although the major EBV surface glycoprotein gp350/220 (gp350) has been proposed as an important prophylactic vaccine target, attempts to develop a potent vaccine based on gp350 alone have shown limited success in the clinic. We provide data showing that five EBV glycoproteins (gp350, gB, gp42, gH, and gL) involved in viral entry and infection can successfully be incorporated on the surface of EBV-like particles (EBV-LPs). These EBV-LPs, when administered together with aluminum hydroxide and monophosphoryl lipid A as adjuvants to New Zealand white rabbits, elicited EBV glycoprotein-specific antibodies capable of neutralizing viral infection in vitro in both B cells and epithelial cells, better than soluble gp350 ectodomain. Our findings suggest that a pentavalent EBV-LP formulation might be an ideal candidate for development as a safe and immunogenic EBV vaccine.

6.
Virology ; 536: 1-15, 2019 10.
Article in English | MEDLINE | ID: mdl-31377598

ABSTRACT

Prevention of Epstein-Barr virus (EBV) infection has focused on generating neutralizing antibodies (nAbs) targeting the major envelope glycoprotein gp350/220 (gp350). In this study, we generated 23 hybridomas producing gp350-specific antibodies. We compared the candidate gp350-specific antibodies to the well-characterized nAb 72A1 by: (1) testing their ability to detect gp350 using enzyme-linked immunosorbent assay, flow cytometry, and immunoblot; (2) sequencing their heavy and light chain complementarity-determining regions (CDRs); (3) measuring the ability of each monoclonal antibody (mAb) to neutralize EBV infection in vitro; and (4) mapping the gp350 amino acids bound by the mAbs using competitive cell and linear peptide binding assays. We performed sequence analysis to identify 15 mAbs with CDR regions unique from those of murine 72A1 (m72A1). We observed antigen binding competition between biotinylated m72A1, serially diluted unlabeled gp350 nAbs (HB1, HB5, HB11, HB20), and our recently humanized 72A1, but not gp350 non-nAb (HB17) or anti-KSHV gH/gL antibody.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Herpesvirus 4, Human/drug effects , Immunodominant Epitopes/chemistry , Viral Matrix Proteins/chemistry , Amino Acid Sequence , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/biosynthesis , Antibodies, Viral/isolation & purification , Antibodies, Viral/pharmacology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Binding Sites, Antibody , Binding, Competitive , Cell Line, Tumor , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/immunology , Epithelial Cells/virology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/immunology , Humans , Hybridomas/chemistry , Hybridomas/immunology , Immunodominant Epitopes/immunology , Mice , Protein Binding , Sequence Alignment , Sequence Homology, Amino Acid , Viral Matrix Proteins/immunology
7.
Mol Ther Methods Clin Dev ; 14: 100-112, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31334303

ABSTRACT

HIV-1 infection continues to be a global health challenge and a vaccine is urgently needed. Broadly neutralizing antibodies (bNAbs) are considered essential as they inhibit multiple HIV-1 strains, but they are difficult to elicit by conventional immunization. In contrast, non-neutralizing antibodies that correlated with reduced risk of infection in the RV144 HIV vaccine trial are relatively easy to induce, but responses are not durable. To overcome these obstacles, adeno-associated virus (AAV) vectors were used to provide long-term expression of antibodies targeting the V2 region of the HIV-1 envelope protein, including the potent CAP256-VRC26.25 bNAb, as well as non-neutralizing CAP228 antibodies that resemble those elicited by vaccination. AAVs mediated effective antibody expression in cell culture and immunocompetent mice. Mean concentrations of human immunoglobulin G (IgG) in mouse sera increased rapidly following a single AAV injection, reaching 8-60 µg/mL for CAP256 antibodies and 44-220 µg/mL for CAP228 antibodies over 24 weeks, but antibody concentrations varied for individual mice. Secreted antibodies collected from serum retained the expected binding and neutralizing activity. The vectors generated here are, therefore, suitable for the delivery of V2-targeting HIV antibodies, and they could be used in a vectored immunoprophylaxis (VIP) approach to sustain the level of antibody expression required to prevent HIV infection.

8.
Vaccine ; 37(30): 4184-4194, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31201053

ABSTRACT

Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.1, gB, and gH/gL) into a single multivalent KSHV-like particle (KSHV-LP). Purified KSHV-LPs were similar in size, shape, and morphology to KSHV virions. Vaccination of rabbits with adjuvanted KSHV-LPs generated strong glycoprotein-specific antibody responses, and purified immunoglobulins from KSHV-LP-immunized rabbits neutralized KSHV infection in epithelial, endothelial, fibroblast, and B cell lines (60-90% at the highest concentration tested). These findings suggest that KSHV-LPs may be an ideal platform for developing a safe and effective prophylactic KSHV vaccine. We envision performing future studies in animal models that are susceptible to KSHV infection, to determine correlates of immune protection in vivo.


Subject(s)
Antibodies, Neutralizing/immunology , Herpesvirus 8, Human/immunology , Adjuvants, Immunologic , Animals , Electrophoresis, Polyacrylamide Gel , Herpesvirus 8, Human/pathogenicity , Microscopy, Electron, Transmission , Plasmids/genetics , Rabbits , Vaccination/methods , Viral Envelope Proteins/immunology
9.
J Virol ; 93(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31142670

ABSTRACT

Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and is the causative infectious agent of Kaposi sarcoma and two malignancies of B cell origin. To date, there is no licensed KSHV vaccine. Development of an effective vaccine against KSHV continues to be limited by a poor understanding of how the virus initiates acute primary infection in vivo in diverse human cell types. The role of glycoprotein H (gH) in herpesvirus entry mechanisms remains largely unresolved. To characterize the requirement for KSHV gH in the viral life cycle and in determination of cell tropism, we generated and characterized a mutant KSHV in which expression of gH was abrogated. Using a bacterial artificial chromosome containing a complete recombinant KSHV genome and recombinant DNA technology, we inserted stop codons into the gH coding region. We used electron microscopy to reveal that the gH-null mutant virus assembled and exited from cells normally, compared to wild-type virus. Using purified virions, we assessed infectivity of the gH-null mutant in diverse mammalian cell types in vitro Unlike wild-type virus or a gH-containing revertant, the gH-null mutant was unable to infect any of the epithelial, endothelial, or fibroblast cell types tested. However, its ability to infect B cells was equivocal and remains to be investigated in vivo due to generally poor infectivity in vitro Together, these results suggest that gH is critical for KSHV infection of highly permissive cell types, including epithelial, endothelial, and fibroblast cells.IMPORTANCE All homologues of herpesvirus gH studied to date have been implicated in playing an essential role in viral infection of diverse permissive cell types. However, the role of gH in the mechanism of KSHV infection remains largely unresolved. In this study, we generated a gH-null mutant KSHV and provided evidence that deficiency of gH expression did not affect viral particle assembly or egress. Using the gH-null mutant, we showed that gH was indispensable for KSHV infection of epithelial, endothelial, and fibroblast cells in vitro This suggests that gH is an important target for the development of a KSHV prophylactic vaccine to prevent initial viral infection.


Subject(s)
Endothelial Cells/virology , Epithelial Cells/virology , Fibroblasts/virology , Herpesviridae Infections/virology , Herpesvirus 8, Human/physiology , Viral Envelope Proteins/genetics , Viral Tropism , Genome, Viral , Genomics/methods , Humans , Mutation , Viral Envelope Proteins/metabolism , Virion , Virus Internalization
10.
Recent Pat Anticancer Drug Discov ; 9(2): 153-75, 2014 May.
Article in English | MEDLINE | ID: mdl-24171821

ABSTRACT

Due to the high heterogeneity of breast cancers, numerous recent patents describe improved methods of detection and classification which promise better patient prognosis and treatment. In particular, there has been a shift towards more effective genetic screening to identify specific mutations associated with breast tumours, which may lead to "personalised medicine" with improved outcomes. Two challenging areas of breast cancer research involve the development of treatments for the highly aggressive triple negative breast cancer subtype as well as the chemotherapy-resistant cancer stem cell subpopulation. In addition, despite numerous recent advances in breast cancer treatment in woman, male breast cancer remains poorly understood and there are limited therapies available which are developed specifically for men. This review serves to report on important developments in the treatment of breast malignancies patented in the past two years as well as to highlight the current gaps in the field of breast cancer therapeutics and areas which require further study.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms, Male/drug therapy , Breast Neoplasms/drug therapy , Precision Medicine , Breast Neoplasms/metabolism , Breast Neoplasms, Male/metabolism , Female , Humans , Male , Patents as Topic , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
11.
Cell Stress Chaperones ; 16(5): 505-15, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21445704

ABSTRACT

Theiler's murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 µM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 µM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.


Subject(s)
Benzoquinones/metabolism , Cardiovirus Infections/metabolism , Enzyme Inhibitors/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Lactams, Macrocyclic/metabolism , Novobiocin/metabolism , Theilovirus/physiology , Animals , Benzoquinones/pharmacology , Cell Line/drug effects , Cell Line/virology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , Lactams, Macrocyclic/pharmacology , Novobiocin/pharmacology , Theilovirus/drug effects , Theilovirus/pathogenicity , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...