Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Placenta ; 152: 39-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788480

ABSTRACT

INTRODUCTION: Several factors influence transmission of 2019-nCoV from mother to fetus during pregnancy, thus the dynamics of vertical transmission is unclear. The role of cellular protective factors, namely a 90 KDa glycoprotein, Early pregnancy-associated protein (Epap-1), expressed by placental endothelial cells in women during early pregnancy would provide an insight into role of placental factors in virus transmission. Since viral spike protein binding to the ACE2 receptors of the host cells promotes virus invasion in placental tissue, an analysis of effects of Epap-1 on the Spike-ACE2 protein binding was studied. METHODS: Epap-1 was isolated from MTP placental tissue. Molecular interaction of Epap-1 and variants of the spike was analyzed in silco. The interaction of Epap-1 with Spike and RBD were analyzed using ELISA and immunofluorescence studies. RESULTS: The results in silico showed an interaction of Epap-1 with S-protein at RBD region involving K417, Y449, Y453, Y456, Y473, Q474, F486, Q498, N501 residues of spike with Y61, F287, I302, N303, N305, S334, N465, G467, N468 residues of Epap-1 leading to interference of S-protein and ACE2 interaction [1]. Further, the interaction is conserved among the variants. The studies in vitro confirm that Epap-1 affects S protein-ACE2 and RBD- ACE2 binding, thus suggesting that during early pregnancy, SARS CoV-2 infection may be protected by Epap-1 protein present in placental tissue. The results were further confirmed by pseudovirus expressing Spike and RBD in an infection assay. DISCUSSION: Epap-1 interferes with Spike and RBD interaction with ACE2, suggesting a possible mechanism of the antiviral environment during pregnancy.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Infectious Disease Transmission, Vertical , Placenta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Female , Humans , Pregnancy , Angiotensin-Converting Enzyme 2/metabolism , Betacoronavirus/metabolism , Coronavirus Infections/transmission , Coronavirus Infections/metabolism , Coronavirus Infections/virology , COVID-19/transmission , COVID-19/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Placenta/metabolism , Placenta/virology , Pneumonia, Viral/metabolism , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/virology , Pregnancy Proteins/metabolism , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
2.
Transbound Emerg Dis ; 69(5): e1721-e1733, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35266305

ABSTRACT

Against the backdrop of the second wave of COVID-19 pandemic in India that started in March 2021, we have monitored the spike (S) protein mutations in all the reported (GISAID portal) whole-genome sequences of SARS-CoV-2 circulating in India from 1 January 2021 to 31 August 2021. In the 43,102 SARS-CoV-2 genomic sequences analysed, we have identified 24,260 amino acid mutations in the S protein, based on which 265 Pango lineages could be categorized. The dominant lineage in most of the 28 states of India and its 8 union territories was B.1.617.2 (the delta variant). However, the states Madhya Pradesh, Jammu & Kashmir, and Punjab had B.1.1.7 (alpha variant) as the major lineage, while the Himachal Pradesh state reported B.1.36 as the dominating lineage. A detailed analysis of various domains of S protein was carried out for detecting mutations having a prevalence of >1%; 70, 18, 7, 3, 9, 4, and 1 (N = 112) such mutations were observed in the N-terminal domain, receptor binding domain, C -terminal domain, fusion peptide region, heptapeptide repeat (HR)-1 domains, signal peptide domain, and transmembrane region, respectively. However, no mutations were recorded in the HR-2 and cytoplasmic domains of the S protein. Interestingly, 13.39% (N = 15) of these mutations were reported to increase the infectivity and pathogenicity of the virus; 2% (N = 3) were known to be vaccine breakthrough mutations, and 0.89% (N = 1) were known to escape neutralizing antibodies. The biological significance of 82% (N = 92) of the reported mutations is yet unknown. As SARS-CoV-2 variants are emerging rapidly, it is critical to continuously monitor local viral mutations to understand national trends of virus circulation. This can tremendously help in designing better preventive regimens in the country, and avoid vaccine breakthrough infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acids , Animals , Antibodies, Neutralizing , COVID-19/epidemiology , COVID-19/veterinary , Pandemics , Peptides/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
3.
PLoS One ; 16(2): e0246173, 2021.
Article in English | MEDLINE | ID: mdl-33529260

ABSTRACT

We report clinical profile of hundred and nine patients with SARS CoV-2 infection, and whole genome sequences (WGS) of seven virus isolates from the first reported cases in India, with various international travel histories. Comorbidities such as diabetes, hypertension, and cardiovascular disease were frequently associated with severity of the disease. WBC and neutrophil counts showed an increase, while lymphocyte counts decreased in patients with severe infection suggesting a possible neutrophil mediated organ damage, while immune activity may be diminished with decrease in lymphocytes leading to disease severity. Increase in SGOT, SGPT and blood urea suggests the functional deficiencies of liver, heart, and kidney in patients who succumbed to the disease when compared to the group of recovered patients. The WGS analysis showed that these isolates were classified into two clades: I/A3i, and A2a (four according to GISAID: O, L, GR, and GH). Further, WGS phylogeny and travel history together indicate possible transmission from Middle East and Europe. Three S protein variants: Wuhan reference, D614G, and Y28H were identified predicted to possess different binding affinities to host ACE2.


Subject(s)
COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , Whole Genome Sequencing , Adult , Aged , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/pathology , Female , Humans , India , Male , Middle Aged , Phylogeny , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...