Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharm Sin B ; 12(11): 4154-4164, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35968270

ABSTRACT

It is an urgent demand worldwide to control the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro) are key targets to discover SARS-CoV-2 inhibitors. After screening 12 Chinese herbal medicines and 125 compounds from licorice, we found that a popular natural product schaftoside inhibited 3CLpro and PLpro with IC50 values of 1.73 ± 0.22 and 3.91 ± 0.19 µmol/L, respectively, and inhibited SARS-CoV-2 virus in Vero E6 cells with EC50 of 11.83 ± 3.23 µmol/L. Hydrogen-deuterium exchange mass spectrometry analysis, quantum mechanics/molecular mechanics calculations, together with site-directed mutagenesis indicated the antiviral activities of schaftoside were related with non-covalent interactions with H41, G143 and R188 of 3CLpro, and K157, E167 and A246 of PLpro. Moreover, proteomics analysis and cytokine assay revealed that schaftoside also regulated immune response and inflammation of the host cells. The anti-inflammatory activities of schaftoside were confirmed on lipopolysaccharide-induced acute lung injury mice. Schaftoside showed good safety and pharmacokinetic property, and could be a promising drug candidate for the prevention and treatment of COVID-19.

2.
J Adv Res ; 36: 201-210, 2022 02.
Article in English | MEDLINE | ID: mdl-35116174

ABSTRACT

Introduction: The COVID-19 global epidemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a great public health emergency. Discovering antiviral drug candidates is urgent for the prevention and treatment of COVID-19. Objectives: This work aims to discover natural SARS-CoV-2 inhibitors from the traditional Chinese herbal medicine licorice. Methods: We screened 125 small molecules from Glycyrrhiza uralensis Fisch. (licorice, Gan-Cao) by virtual ligand screening targeting the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. Potential hit compounds were further evaluated by ELISA, SPR, luciferase assay, antiviral assay and pharmacokinetic study. Results: The triterpenoids licorice-saponin A3 (A3) and glycyrrhetinic acid (GA) could potently inhibit SARS-CoV-2 infection, with EC50 of 75 nM and 3.17 µM, respectively. Moreover, we reveal that A3 mainly targets the nsp7 protein, and GA binds to the spike protein RBD of SARS-CoV-2. Conclusion: In this work, we found GA and A3 from licorice potently inhibit SARS-CoV-2 infection by affecting entry and replication of the virus. Our findings indicate that these triterpenoids may contribute to the clinical efficacy of licorice for COVID-19 and could be promising candidates for antiviral drug development.


Subject(s)
COVID-19 , Glycyrrhiza , Triterpenes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Triterpenes/pharmacology
3.
Int J Antimicrob Agents ; 59(1): 106499, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34929295

ABSTRACT

In a bid to contain the current COVID-19 (coronavirus disease 2019) pandemic, various countermeasures have been applied. To date, however, there is a lack of an effective drug for the treatment of COVID-19. Through molecular modelling studies, simeprevir, a protease inhibitor approved for the management of hepatitis C virus infection, has been predicted as a potential antiviral against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causative agent of COVID-19. Here we assessed the efficacy of simeprevir against SARS-CoV-2 both in vitro in Vero E6 cells and in vivo in a human angiotensin-converting enzyme 2 (hACE2) transgenic mouse model. The results showed that simeprevir could inhibit SARS-CoV-2 replication in Vero E6 cells with a half-maximal effective concentration (EC50) of 1.41 ± 0.12 µM. In a transgenic hACE2 mouse model of SARS-CoV-2 infection, intraperitoneal administration of simeprevir at 10 mg/kg/day for 3 consecutive days failed to suppress viral replication. These findings collectively imply that simeprevir does not inhibit SARS-CoV-2 in vivo and therefore do not support its application as a treatment against COVID-19 at a dosage of 10 mg/kg/day.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Simeprevir/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/therapeutic use , COVID-19/virology , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Transgenic , Negative Results , Protease Inhibitors/therapeutic use , Simeprevir/therapeutic use , Vero Cells , COVID-19 Drug Treatment
4.
Sci Total Environ ; 797: 149085, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34293609

ABSTRACT

The ongoing COVID-19 pandemic has generated a global health crisis that needs well management of not only patients but also environments to reduce SARS-CoV-2 transmission. The gold standard RT-qPCR method is sensitive and rapid to detect SARS-CoV-2 nucleic acid, but does not answer if PCR-positive samples contain infectious virions. To circumvent this problem, we report an SDS-propidium monoazide (PMA) assisted RT-qPCR method that enables rapid discrimination of live and dead SARS-CoV-2 within 3 h. PMA, a photo-reactive dye, can react with viral RNA released or inside inactivated SARS-CoV-2 virions under assistance of 0.005% SDS, but not viral RNA inside live virions. Formation of PMA-RNA conjugates prevents PCR amplification, leaving only infectious virions to be detected. Under optimum conditions, RT-qPCR detection of heat-inactivated SARS-CoV-2 resulted in larger than 9 Ct value differences between PMA-treated and PMA-free groups, while less than 0.5 Ct differences were observed in the detection of infectious SARS-CoV-2 ranging from 20 to 5148 viral particles. Using a cutoff Ct difference of 8.6, this method could differentiate as low as 8 PFU live viruses in the mixtures of live and heat-inactivated virions. Further experiments showed that this method could successfully monitor the natural inactivation process of SARS-CoV-2 on plastic surfaces during storage with comparable results to the gold standard plaque assay. We believe that the culture-free method established here could be used for rapid and convenient determination of infectious SARS-CoV-2 virions in PCR-positive samples, which will facilitate better control of SARS-CoV-2 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Azides , Humans , Pandemics , Propidium/analogs & derivatives , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
5.
J Vis Exp ; (169)2021 03 31.
Article in English | MEDLINE | ID: mdl-33871452

ABSTRACT

Diagnosis of the ongoing SARS-CoV-2 pandemic is a priority for all countries across the globe. Currently, reverse transcription quantitative PCR (RT-qPCR) is the gold standard for SARS-CoV-2 diagnosis as no permanent solution is available. However effective this technique may be, research has emerged showing its limitations in detection and diagnosis especially when it comes to low abundant targets. In contrast, droplet digital PCR (ddPCR), a recent emerging technology with superior advantages over qPCR, has been shown to overcome the challenges of RT-qPCR in diagnosis of SARS-CoV-2 from low abundant target samples. Prospectively, in this article, the capabilities of RT-ddPCR are further expanded by showing steps on how to develop simplex, duplex, triplex probe mix, and quadruplex assays using a two-color detection system. Using primers and probes targeting specific sites of the SARS-CoV-2 genome (N, ORF1ab, RPP30, and RBD2), the development of these assays is shown to be possible. Additionally, step by step detailed protocols, notes, and suggestions on how to improve the assays workflow and analyze data are provided. Adapting this workflow in future works will ensure that the maximum number of targets can be sensitively detected in a small sample significantly improving on cost and sample throughput.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , DNA Primers , Humans , Pandemics , RNA, Viral/genetics , Reverse Transcription , Sensitivity and Specificity
6.
Expert Rev Mol Diagn ; 21(1): 119-129, 2021 01.
Article in English | MEDLINE | ID: mdl-33380245

ABSTRACT

Introduction: With the ongoing SARS-CoV-2 pandemic, different articles have been published highlighting the superiority of droplet digital PCR (ddPCR) over the gold-standard reverse transcription PCR (RT-PCR) in SARS-CoV-2 detection. However, few studies have been reported on developing multiplex ddPCR assays for SARS-CoV-2 detection and their performance. This study shows steps on how to develop different ddPCR SAR-CoV-2 assays including higher order multiplex assays for SARS-CoV-2 detection and antiviral screening.Methods: Using multiple primer/probe sets, we developed, optimized, and analyzed the performance of simplex (1 target), duplex (2 targets), triplex probe mix (3 targets), and quadruplex (4 targets) SARS-CoV-2 ddPCR assays based on a two-color ddPCR detection system.Results: Results showed that the quadruplex assay had similar limits of detection and accuracy to the lower multiplex assays. Analyzing 94 clinical samples demonstrated that the ddPCR triplex probe mix assay had better sensitivity than the RT-qPCR assay. Additionally, the ddPCR multiplex assay showed that remdesivir could inhibit the growth of SARS-CoV-2 in vitro while another testing drug could not.Conclusion: Our research shows that developing multiplex ddPCR assays is possible by combing probe mix and amplitude-based multiplexing, which will help in developing multiplexed ddPCR assays for different SARS-CoV-2 applications.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Multiplex Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Antiviral Agents/pharmacology , DNA Primers/genetics , False Positive Reactions , Humans , Limit of Detection , Pandemics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity , Temperature , Viral Load/methods
7.
Front Microbiol ; 12: 798431, 2021.
Article in English | MEDLINE | ID: mdl-34975822

ABSTRACT

African Swine Fever Virus (ASFV), a lethal hemorrhagic fever of the swine, poses a major threat to the world's swine population and has so far resulted in devastating socio-economic consequences. The situation is further compounded by the lack of an approved vaccine or antiviral drug. Herein, we investigated a novel anti-ASFV approach by targeting G-Quadruplexes (G4s) in the viral genome. Bioinformatics analysis of putative G-quadruplex-forming sequences (PQSs) in the genome of ASFV BA71V strain revealed 317 PQSs on the forward strand and 322 PQSs on the reverse strand of the viral genome, translating to a density of 3.82 PQSs/kb covering 9.52% of the entire genome, which means that 85% of genes in the ASFV genome have at least 1 PQS on either strand. Biochemical characterization showed that 8 out of 13 conserved PQSs could form stable G4s in the presence of K+, and 4 of them could be stabilized by G4 ligands, N-Methyl Mesoporphyrin (NMM), and pyridostatin (PDS) in vitro. An enhanced green fluorescent protein (EGFP)-based reporter system revealed that the expression of two G4-containing genes, i.e., P1192R and D117L, could be significantly suppressed by NMM and PDS in 293T cells. In addition, a virus infection model showed that NMM could inhibit the replication of ASFV in Porcine Alveolar Macrophages (PAM) cells with an EC50 value of 1.16 µM. Altogether, the present study showed that functional PQSs existent in the promoters, CDS, 3' and 5' UTRs of the ASFV genome could be stabilized by G4 ligands, such as NMM and PDS, and could serve as potential targets for antivirals.

SELECTION OF CITATIONS
SEARCH DETAIL
...