Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Evol ; 91(4): 552-561, 2023 08.
Article in English | MEDLINE | ID: mdl-37147402

ABSTRACT

Genetic integrity of an accession should be preserved in the conservation of germplasm. Characterization of diverse germplasm based on a molecular basis enhances its conservation and use in breeding programs. The aim of this study was to assess the genetic diversity of 169 sorghum accessions using a total of 6977 SNP markers. The polymorphic information content of the markers was 0.31 which is considered to be moderately high. Structure analysis using ADMIXTURE program revealed a total of 10 subpopulations. Neighbor-joining tree revealed the presence of six main clusters among these subpopulations whereas in principal component analysis, seven clusters were identified. Cluster analysis grouped most populations depending on source of collection although other accessions originating from the same source were grouped under different clusters. Analysis of molecular variance (AMOVA) revealed 30% and 70% of the variation occurred within and among accessions, respectively. Gene flow within the populations was, however, limited indicating high differentiation within the subpopulation. Observed heterozygosity among accessions varied from 0.03 to 0.06 with a mean of 0.05 since sorghum is a self-pollinating crop. High genetic diversity among the subpopulations can be further explored for superior genes to develop new sorghum varieties.


Subject(s)
Polymorphism, Single Nucleotide , Sorghum , Polymorphism, Single Nucleotide/genetics , Genetic Variation/genetics , Sorghum/genetics
2.
Int J Phytoremediation ; 24(14): 1543-1556, 2022.
Article in English | MEDLINE | ID: mdl-35246005

ABSTRACT

Lead (Pb) and cadmium (Cd) are among the heavy metals with phytotoxic and toxic effects on vegetables resulting in a significant decrease in crop yields. On the contrary, silicon (Si) has beneficial effects in enhancing plants' tolerance to biotic and abiotic stresses such as that imposed by heavy metals. This study evaluated the effects of Pb and Cd on the growth, biomass, and ameliorative mechanism of Si on concentration and uptake by leafy vegetables: spinach, kale, and amaranth. The greenhouse experiment treatments were Pb, Pb + Si, Cd, Cd + Si, Si, and control. These were arranged as a split-plot in a complete randomized design (CRD): main plots constituted vegetable species and treatments as subplots. The field experiment was carried in the Kenyatta University Research Farm, and treatments included Si application and control, arranged in a randomized complete block design (RCBD). Cadmium application reduced root biomass by 53-70% while Pb reduced it by 54-61% when compared with control. Silicon fertilization enhanced biomass tolerance by three-folds' and significantly (p < 0.001) reduced concentration and uptake of Pb and Cd. Results indicated a strong negative correlation between Cd concentrations and growth parameters (r = 0.8). The study recommends Si application to enhance leafy vegetables' tolerance to Pb and Cd.


Heavy metals' effects on different cereal crops have been studied extensively. However, such studies on vegetables are rare. The current study assessed the role of silicon in alleviating effects of heavy metals on growth and biomass in three leafy vegetables: spinach, kale, and amaranths grown in soils contaminated with lead and cadmium. The study presents a new approach to enhanced safe vegetable production, responsive to increasing urbanization, industrialization, pollution, and human population.


Subject(s)
Metals, Heavy , Soil Pollutants , Vegetables , Cadmium/analysis , Silicon , Soil Pollutants/analysis , Soil , Lead , Biodegradation, Environmental , Metals, Heavy/analysis
SELECTION OF CITATIONS
SEARCH DETAIL