Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Front Immunol ; 11: 629726, 2020.
Article in English | MEDLINE | ID: mdl-33763056

ABSTRACT

Objective: Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine proteinases that may be PAR2 activators. Methods: Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA SF cells were further characterized by single cell 3'-RNA-sequencing. Active serine proteinases were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates, activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel. Results: PsA SF cells were dominated by monocytes/macrophages, which consisted of three populations representing classical, non-classical and intermediate cells. The classical monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF monocytes/macrophages, particularly in the intermediate population. PAR2 expression and signaling in primary PsA monocytes/macrophages significantly impacted the production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active serine proteinase in SF that could trigger calcium signaling partially via PAR2. Conclusion: PAR2 and its activating proteinases, including tryptase-6, can be important mediators of inflammation in PsA. Components within this proteinase-receptor axis may represent novel therapeutic targets.


Subject(s)
Arthritis, Psoriatic/immunology , Calcium Signaling/immunology , Macrophages/immunology , Receptor, PAR-2/immunology , Tryptases/immunology , Arthritis, Psoriatic/pathology , Female , Humans , Macrophages/pathology , Male
3.
F1000Res ; 7: 1666, 2018.
Article in English | MEDLINE | ID: mdl-30647911

ABSTRACT

Background: Cervical-vaginal fluid (CVF) hydrates the mucosa of the lower female reproductive tract and is known to contain numerous proteases. The low pH of CVF (4.5 or below in healthy women of reproductive age) is a uniquely human attribute and poses a challenge for the proteolytic functioning of the proteases identified in this complex biological fluid. Despite the abundance of certain proteases in CVF, the proteolytic activity and function of proteases in CVF is not well characterized. Methods: In the present study, we employed fluorogenic substrate screening to investigate the influence of pH and inhibitory compounds on the proteolytic activity in CVF. Activity-based probe (ABP) proteomics has evolved as a powerful tool to investigate active proteases within complex proteomes and a trypsin-specific ABP was used to identify active proteases in CVF. Results: Serine proteases are among the most abundant proteins in the CVF proteome. Labeling human CVF samples with the trypsin-specific ABP revealed serine proteases transmembrane protein serine 11D and kallikrein-related peptidase 13 as active proteases in CVF. Furthermore, we demonstrated that the proteolytic activity in CVF is highly pH-dependent with an almost absolute inhibition of trypsin-like proteolytic activity at physiological pH levels. Conclusions: These findings provide a framework to understand proteolytic activity in CVF. Furthermore, the present results provide clues for a novel regulatory mechanism in which fluctuations in CVF pH have the potential to control the catalytic activity in the lower female reproductive tract.

4.
Proteomics ; 17(21)2017 Nov.
Article in English | MEDLINE | ID: mdl-28941238

ABSTRACT

Cervical-vaginal fluid (CVF) covers the lower part of the female reproductive system and functions in the homeostasis and immunity of the surrounding tissues. In contrast to the CVF proteome of both nonpregnant and pregnant women, the CVF peptidome has not been reported to date. In the current study, we identified 1087 proteins in CVF, of which 801 proteins were not previously identified in CVF proteomes. The presence of the tissue-specific proteins oviductal glycoprotein 1 and tubulin polymerization-promoting protein family member 3 strongly suggests that the tissues of the upper female reproductive tract contribute to the protein composition of CVF. The tremendous catalytic potential of CVF was highlighted by the identification of 85 proteases and the detection of pH-dependent trypsin-like proteolytic activity. Over 1000 endogenous peptides were detected in the CVF peptidome, and 39 peptides are predicted to have antimicrobial activity. The detailed proteomic and peptidomic analysis of CVF will further aid in the delineation of pathways related to reproduction, immunity and host defense, and assist in developing new biomarkers for malignant and other diseases of the female reproductive tract. Data are available via ProteomeXchange with identifiers PXD004450 (CVF peptidome) and PDX004363 (CVF proteome).


Subject(s)
Body Fluids/chemistry , Cervix Uteri/chemistry , Peptide Fragments/analysis , Peptide Fragments/immunology , Proteome/analysis , Vagina/chemistry , Adult , Biomarkers/metabolism , Cervix Uteri/metabolism , Female , Humans , Pregnancy , Proteome/metabolism , Proteomics/methods , Vagina/metabolism , Young Adult
5.
F1000Res ; 6: 1131, 2017.
Article in English | MEDLINE | ID: mdl-28815018

ABSTRACT

BACKGROUND: We hypothesize that prostate specific antigen (PSA), a protein that it is under regulation by androgens, may be differentially expressed in female elite athletes in comparison to control women. METHODS: We conducted a cross-sectional study of 106 female athletes and 114 sedentary age-matched controls.  Serum from these women was analyzed for complexed prostate specific antigen (cPSA) and free prostate specific antigen (fPSA), by fifth generation assays with limits of detection of around 6 and 140 fg/mL, respectively.  A panel of estrogens, androgens and progesterone in the same serum was also quantified by tandem mass spectrometry.  Results: Both components of serum PSA (cPSA and fPSA) were lower in the elite athletes vs the control group (P=0.033 and 0.013, respectively).  Furthermore, estrone (p=0.003) and estradiol (p=0.004) were significantly lower, and dehydroepiandrosterone  (p=0.095) and 5-androstene-3ß, 17ß-diol (p=0.084) tended to be higher in the athletes vs controls. Oral contraceptive use was similar between groups and significantly associated with increased cPSA and fPSA in athletes (p= 0.046 and 0.009, respectively).  PSA fractions were not significantly associated with progesterone changes. The Spearman correlation between cPSA and fPSA in both athletes and controls was 0.75 (P < 0.0001) and 0.64 (P < 0.0001), respectively.  Conclusions: Elite athletes have lower complexed and free PSA, higher levels of androgen precursors and lower levels of estrogen in their serum than sedentary control women. ABBREVIATIONS: cPSA, complexed PSA; fPSA, free PSA; PCOS, polycystic ovarian syndrome; E1, estrone; E2, estradiol; DHEA, dehydroepiandrosterone, Testo, testosterone; DHT, dihydrotestosterone; PROG, progesterone; Delta 4, androstenedione; Delta 5, androst-5-ene-3ß, 17ß-diol; BMD, body mineral density; LLOQ, lower limit of quantification; ULOQ, upper limit of quantification; LOD, limit of detection; ACT, α 1-antichymotrypsin.

7.
J Proteomics ; 155: 40-48, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28095327

ABSTRACT

Sweat is produced by eccrine and apocrine glands and represents a biological fluid with established roles in thermo-regulation and host infection defense. The composition of sweat is highly dynamic and alters significantly in various skin and other disorders. Therefore, in-depth profiling of sweat protein composition is expected to augment our understanding of the pathobiology of several skin diseases and may lead to the identification of useful sweat-based disease biomarkers. We here reported an in-depth analysis of the human sweat proteome and peptidome. Sweat was collected from healthy males and healthy females of ages 20-60years, following strenuous exercise. Two sweat pools were prepared (1 for males and 1 for females) and were subjected to sample preparation for mass spectrometric analysis. We identified a total of 861 unique proteins during our proteomic analysis and 32,818 endogenous peptides (corresponding to additional 1067 proteins) from our peptidomics workflow. As expected, the human skin was identified as the most abundant source of sweat proteins and peptides. Several skin proteases and protease inhibitors were identified in human sweat, highlighting the intense proteolytic activity of human skin. The presence of several antimicrobial peptides supports the functional roles of sweat in host defense and innate immunity. SIGNIFICANCE: Sweat is a skin-associated biological fluid, secreted by eccrine and apocrine glands, with essential function in body thermo-regulation and host infection defense. In the present study, we performed in-depth profiling of both sweat proteome and peptidome composition. Our data provide the most in-depth characterization of the skin's catalytic network present in sweat. For the first time, we brought to light novel peptides in human sweat that potentially have antimicrobial activity, which highlight the important role of this fluid in innate immunity. All these findings allow us to have a better understanding of the complex web of proteases in skin and may act as a platform for the future discovery of novel skin biomarkers.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Proteolysis , Proteome/metabolism , Proteomics , Sweat/metabolism , Adult , Female , Humans , Male , Middle Aged
8.
Nat Rev Urol ; 13(10): 596-607, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27603220

ABSTRACT

Cervical-vaginal fluid (CVF) is a complex biological fluid that hydrates the mucosa of the lower female reproductive system. In-depth proteomic and biochemical studies on CVF have revealed that it contains large amounts of endogenous proteases and protease inhibitors, including an abundance of several members of the tissue kallikrein-related peptidase (KLK) family. Despite their ubiquitous presence in human tissues and fluids, KLK expression levels vary considerably, with maximum expression observed in reproduction-related tissues and fluids. The roles of KLKs in the lower female reproductive system are not fully understood. The activation of KLKs in CVF is dependent on pH and various modes of KLK regulation in the vagina exist. KLKs have been postulated to have roles in physiological functions related to antimicrobial processes, vaginal and cervical epithelial desquamation, sperm transport, and the processing of fetal membranes as observed in preterm premature rupture of membranes. Increased understanding of the functional roles of KLKs in the lower female reproductive system could lead to new diagnostic and therapeutic modalities for conditions such as vaginal infections and vaginal atrophy.


Subject(s)
Reproductive Health , Tissue Kallikreins/metabolism , Vagina/metabolism , Female , Humans
9.
J Infect Dis ; 203(8): 1101-9, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21451000

ABSTRACT

BACKGROUND: The prevalence of Streptococcus gallolyticus subsp gallolyticus ( Streptococcus bovis biotype I) endocarditis is in general low but very often linked to colorectal cancer. Therefore, this study aimed to reveal the virulence characteristics that distinguish this opportunistic pathogen from a panel of (closely related) intestinal bacteria. METHODS: The route of infection was reconstructed in vitro with adhesion, invasion, and translocation assays on differentiated Caco-2 cells. Furthermore, cellular immune responses upon infection and bacterial biofilm formation were analyzed in a comparative manner. RESULTS: S. gallolyticus subsp gallolyticus strains were demonstrated to have a relative low adhesiveness and could not internalize epithelial cells. However, these bacteria were uniquely able to paracellularly cross a differentiated epithelium without inducing epithelial interleukin 8 or 1ß responses. Importantly, they had an outstanding ability to form biofilms on collagen-rich surfaces, which in vivo are found at damaged heart valves and (pre)cancerous sites with a displaced epithelium. CONCLUSIONS: Together, these data show that S. gallolyticus subsp gallolyticus has a unique repertoire of virulence factors that facilitate infection through (pre)malignant colonic lesions and subsequently can provide this bacterium with a competitive advantage in (1) evading the innate immune system and (2) forming resistant vegetations at collagen-rich sites in susceptible patients with colorectal cancer.


Subject(s)
Colorectal Neoplasms/microbiology , Streptococcal Infections/complications , Streptococcal Infections/microbiology , Streptococcus/pathogenicity , Bacterial Adhesion , Biofilms , Caco-2 Cells , Collagen , Cytokines/metabolism , Epithelial Cells/immunology , HT29 Cells , Humans , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...