Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Fertil Steril ; 9(3): 361-70, 2015.
Article in English | MEDLINE | ID: mdl-26644860

ABSTRACT

BACKGROUND: This research studies the effects of activation and inhibition of Wnt3A signaling pathway in buffalo (Bubalus bubalis) embryonic stem (ES) cell-like cells. MATERIALS AND METHODS: To carry on this experimental study, the effects of activation and inhibition of Wnt3A signaling in buffalo ES cell-like cells were examined using Bio (0.5 mM) combined with WNT3A (200 ng/ml), as an activator, and Dickkopf-1 (Dkk1, 250 ng/ml), as an inhibitor, of the pathway. ES cells were cultured up to three weeks in ES cell medium without fibroblast growth factor-2 (FGF-2) and leukemia inhibitory factor (LIF), but in the presence of Bio, WNT3A, Bio+WNT3A and Dkk1. The effects of these supplements were measured on the mean area of ES cell colonies and on the expression levels of a number of important genes related to pluripotency (Oct4, Nanog, Sox2 and c-Myc) and the Wnt pathway (ß-catenin). ES cell colonies cultured in ES cell medium that contained optimized quantities of LIF and FGF-2 were used as the control. Data were collected for week-1 and week-3 treated cultures. In addition, WNT3A-transfected ES cells were compared with the respective mock-transfected colonies, either alone or in combination with Dkk1 for expression of ß-catenin and the pluripotency-related genes. Data were analyzed by ANOVA, and statistical significance was accepted at P<0.05. RESULTS: Among various examined concentrations of Bio (0.5-5 mM), the optimum effect was observed at the 0.5 mM dose as indicated by colony area and expressions of pluripotency-related genes at both weeks-1 and -3 culture periods. At this concentration,the expressions of Nanog, Oct3/4, Sox2, c-Myc and ß-catenin genes were nonsignificantly higher compared to the controls. Expressions of these genes were highest in the Bio+WNT3A treated group, followed by the WNT3A and Bio-supplemented groups, and lowest in the Dkk1-treated group. The WNT-transfected colonies showed higher expressions compared to both mock and Dkk1-treated mock transfected colonies. CONCLUSION: WNT3A functions to maintain the pluripotency of ES cell-like cells both as an exogenous growth factor as well as an endogenously expressed gene. It complements the absence of FGF-2 and LIF, otherwise propounded essential for buffalo ES cell culture. WNT3A antagonizes the inhibitory effects of Dkk1 and acts in combination with its activator, Bio, to activate the Wnt signaling pathway.

2.
Cell J ; 17(2): 264-73, 2015.
Article in English | MEDLINE | ID: mdl-26199905

ABSTRACT

OBJECTIVE: In order to retain an undifferentiated pluripotent state, embryonic stem (ES) cells have to be cultured on feeder cell layers. However, use of feeder layers limits stem cell research, since experimental data may result from a combined ES cell and feeder cell response to various stimuli. MATERIALS AND METHODS: In this experimental study, a buffalo ES cell line was established from in vitro derived blastocysts and characterized by the Alkaline phosphatase (AP) and immunoflourescence staining of various pluripotency markers. We examined the effect of various factors like fibroblast growth factor 2 (FGF-2), leukemia inhibitory factor (LIF) and Y-27632 to support the growth and maintenance of bubaline ES cells on gelatin coated dishes, in order to establish feeder free culture systems. We also analyzed the effect of feeder-conditioned media on stem cell growth in gelatin based cultures both in the presence as well as in the absence of the growth factors. RESULTS: The results showed that Y-27632, in the presence of FGF-2 and LIF, resulted in higher colony growth and increased expression of Nanog gene. Feeder-Conditioned Medium resulted in a significant increase in growth of buffalo ES cells on gelatin coated plates, however, feeder layer based cultures produced better results than gelatin based cultures. Feeder layers from buffalo fetal fibroblast cells can support buffalo ES cells for more than two years. CONCLUSION: We developed a feeder free culture system that can maintain buffalo ES cells in the short term, as well as feeder layer based culture that can support the long term maintenance of buffalo ES cells.

3.
Reprod Fertil Dev ; 26(4): 551-61, 2014.
Article in English | MEDLINE | ID: mdl-23656691

ABSTRACT

The aim of this study was to investigate the transcriptional profile and role of WNT3A signalling in maintaining buffalo embryonic stem (ES) cells in a pluripotent state and in the induction of their differentiation. ES cells were derived from embryos produced by in vitro fertilisation (iESC), parthenogenesis (pESC) and hand-made cloning (cESC). The expression of WNT3A, its receptors and intermediate signalling pathways were found to be conserved in ES cells derived from the three different sources. WNT3A was expressed in ES cells but not in embryoid bodies derived from iESC or in buffalo fetal fibroblast cells. It was revealed by real-time polymerase chain reaction analysis that following supplementation of culture medium with WNT3A (100, 200 or 400ngmL(-1)) a significant increase (P<0.05) was observed in the expression level of ß-CATENIN, which indicated the activation of the canonical WNT pathway. WNT3A, in combination with exogenous fibroblast growth factor-2 and leukaemia inhibitory factor, induced proliferation of undifferentiated ES cells. Differentiation studies showed that WNT3A caused formation of scaffold-like structures and inhibition of differentiation into neuron-like cells. In conclusion, the WNT3A signalling pathway is necessary both for maintaining undifferentiated buffalo ES cells as well as for directing their differentiation.


Subject(s)
Buffaloes/metabolism , Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Wnt Signaling Pathway , Wnt3A Protein/metabolism , Animals , Buffaloes/embryology , Buffaloes/genetics , Cell Differentiation , Cell Lineage , Cell Proliferation , Cells, Cultured , Fibroblast Growth Factor 2/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Leukemia Inhibitory Factor/metabolism , RNA, Messenger/metabolism , Receptors, Wnt/metabolism , Transcription, Genetic , Wnt3A Protein/genetics , beta Catenin/metabolism
4.
Cell Reprogram ; 14(3): 267-79, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22582863

ABSTRACT

This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (p<0.05) in HMC-derived ESCs (6.897±2.3) compared to that in parthenogenesis- and IVF-derived cells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production.


Subject(s)
Buffaloes/embryology , Cloning, Organism/methods , Embryonic Stem Cells/physiology , Fertilization/physiology , Parthenogenesis/physiology , Animals , Biomarkers/metabolism , Buffaloes/genetics , Buffaloes/metabolism , Cell Differentiation/genetics , Cell Proliferation , Cells, Cultured , Cloning, Organism/veterinary , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , Fertilization/genetics , Fertilization in Vitro/veterinary , Gene Expression Profiling , Gene Expression Regulation, Developmental , Parthenogenesis/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/physiology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...