Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 5(2): 171739, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29515882

ABSTRACT

Theory suggests females should optimize resource allocation across reproductive bouts to maximize lifetime reproduction, balancing current and future reproductive efforts according to physiological state and projected survival and reproduction. Tests of these ideas focus on long-lived vertebrates: few measure age-related reproductive output in iteroparous invertebrates, or partition reserves between those allocated to offspring versus mothers. We investigated how maternal age, and environmental and physiological factors influence reproductive investment in wild tsetse, Glossina pallidipes Austen and G. morsitans morsitans Westwood. Tsetse provide a tractable system to measure reproductive allocation. Females exhibit high maternal investment, producing single, large offspring that rely exclusively on maternal reserves. We find that mothers in better physiological condition and experiencing cooler temperatures produce larger offspring. Pupal size increases significantly but weakly with age. In both species, females with less fat invest proportionately more in offspring. Post-partum fat decreases in flies with badly frayed wings: poor flight capability may limit their feeding efficiency, or they may sacrifice more reserves as a terminal investment. Our results support evidence that offspring size increases with maternal size, investment depends on the environment, and females with lower chances of future reproduction invest more into current offspring. We discuss the implications of maternal effects for predicting vector population responses to environmental change.

2.
Parasit Vectors ; 10(1): 69, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28173824

ABSTRACT

BACKGROUND: Indoor residual spraying is key to dengue control in Cairns and other parts of northern Queensland, Australia, where Aedes aegypti is prevalent, but the strategy faces challenges with regards to slow application time and, therefore, community coverage. A faster potential improvement might be the use of polyethylene netting impregnated with the volatile pyrethroid metofluthrin (SumiOne™). This formulation was assessed in rooms in three houses in Cairns, Australia. One emanator was placed in each room and cages of 10 female Aedes aegypti were exposed at distances of 1 and 3 m. Knockdown and landings on a human hand were counted before metofluthrin exposure and at 10, 30, 60, 90 and 120 min during exposure. In addition, two trials continued over 48 h of exposure to assess the long-term sublethal effects of metofluthrin on caged mosquitoes. RESULTS: Percentage landing rates fell to 0-2.5% in the first 10 min of exposure. Knockdown was most evident between 10 and 30 min (54% at 1 m and 33% at 3 m). Distance from the emanator strongly affected the results: mosquitoes at 3 m exhibited less knockdown and more landings than those at 1 m. As room volume increased, knockdown decreased and the number of landing increased. There is a cumulative mortality and landing inhibition and, for mosquitoes exposed to metofluthrin for > 48 h, mortality was 100% at 1 m and 90% at 3 m. Of those still alive, a small number continued to land and bite. After being removed from metofluthrin-treated rooms, exposed insect cages were found to reducing landing rates for up to 2 h. CONCLUSIONS: Despite only moderate levels of knockdown during the initial hours of exposure, metofluthrin emanators were effective in reducing mosquito landing rates, especially within 1 m, even when exposed on an open veranda. The evaluation methods and results described in this paper will help inform the optimal conditions of deployment of metofluthrin emanators. These devices have the potential to reduce contact between humans and urban disease vectors faster than indoor residual spraying so supplement our current arsenal of dengue control tools.


Subject(s)
Aedes/drug effects , Cyclopropanes/pharmacology , Fluorobenzenes/pharmacology , Insect Bites and Stings/prevention & control , Insecticides/pharmacology , Animals , Australia , Female , Mosquito Control/instrumentation , Time Factors , Volatilization
3.
PLoS Negl Trop Dis ; 9(3): e0003565, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25786253

ABSTRACT

BACKGROUND: The biology of adult tsetse (Glossina spp), vectors of trypanosomiasis in Africa, has been extensively studied - but little is known about larviposition in the field. METHODOLOGY/PRINCIPAL FINDINGS: In September-November 1998, in the hot-dry season in Zimbabwe's Zambezi Valley, we used artificial warthog burrows to capture adult females as they deposited larvae. Females were subjected to ovarian dissection and were defined as perinatal flies, assumed to have entered burrows to larviposit, if oocyte sizes indicated >95% pregnancy completion. Perinatal flies were defined as full-term pregnant if there was a late third instar larva in utero, or postpartum if the uterus was empty. All other females were defined as pre-full-term pregnant (pre-FT). Of 845 G. m. morsitans captured, 91% (765) were female and 295/724 (41%) of females dissected were perinatal flies. By contrast, of 2805 G. pallidipes captured only 71% (2003) were female and only 33% (596/1825) of females were perinatal. Among all perinatal females 67% (596/891) were G. pallidipes. Conversely, in burrows not fitted with traps - such that flies were free to come and go - 1834 (59%) of pupae deposited were G. m. morsitans and only 1297 (41%) were G. pallidipes. Thus, while more full-term pregnant G. pallidipes enter burrows, greater proportions of G. m. morsitans larviposit in them, reflecting a greater discrimination among G. pallidipes in choosing larviposition sites. Catches of males and pre-FT females increased strongly with temperatures above 32°C, indicating that these flies used burrows as refuges from high ambient temperatures. Conversely, catches of perinatal females changed little with maximum temperature but declined from late September through November: females may anticipate that burrows will be inundated during the forthcoming wet season. Ovarian age distributions of perinatal and pre-FT females were similar, consistent with all ages of females larvipositing in burrows with similar probability. CONCLUSIONS/SIGNIFICANCE: Artificial warthog burrows provide a novel method for collecting tsetse pupae, studying tsetse behaviour at larviposition, assessing the physiological status of female tsetse and their larvae, and of improving understanding of the physiological dynamics of terminal pregnancy, and population dynamics generally, with a view to improving methods of trypanosomiasis control.


Subject(s)
Larva/physiology , Pupa/physiology , Tsetse Flies/physiology , Animals , Female , Humans , Insect Vectors , Male , Population Dynamics , Pregnancy , Seasons , Swine , Temperature , Tsetse Flies/anatomy & histology , Zimbabwe
SELECTION OF CITATIONS
SEARCH DETAIL
...